Abstract
A fully-automated 3D image analysis method is proposed to segment lung nodules in HRCT. A specific gray-level mathematical morphology operator, the SMDC-connection cost, acting in the 3D space of the thorax volume is defined in order to discriminate lung nodules from other dense (vascular) structures. Applied to clinical data concerning patients with pulmonary carcinoma, the proposed method detects isolated, juxtavascular and peripheral nodules with sizes ranging from 2 to 20 mm diameter. The segmentation accuracy was objectively evaluated on real and simulated nodules. The method showed a sensitivity and a specificity ranging from 85% to 97% and from 90% to 98%, respectively.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Van Ginneken, B., Ter Haar Romeny, B.M., Viergever, M.A.: Computer-aided diagnosis in chest radiography: a survey. IEEE Trans. on Medical Imaging 20(12), 1228–1241 (2001)
Armato, S.G., Giger, M.L., Moran, C.J., Blackburn, J.T., Doi, K., MacMahon, H.: Computerized detection of pulmonary nodules on CT scans. Radiographics 19, 1303–1311 (1999)
Fiebich, M., Wietholt, C., Renger, B.C., Armato, S.G., Hoffman, K.R., Wormanns, D., Diederich, S.: Automatic detection of pulmonary nodules in low-dose screening thoracic CT examinations. In: Hanson, K.M. (ed.) Proc. Medical Imaging 1999: Image Processing, vol. 3661, pp. 1434–1439 (1999)
Kanazawa, K., Kawata, Y., Niki, N., Satoh, H., Ohmatsu, H., Kakinuma, R., Kaneko, M., Moriyama, N., Eguchi, K.: Computer-aided diagnosis for pulmonary nodules based on helical CT images. Comput. Med. Imag. Graph. 22(2), 157–167 (1998)
Gurcan, M.N., Sahiner, B., Petrick, N., Chan, H.-P., Kazerooni, E.A., Cascade, P.N., Hadjiiski, L.: Lung nodule detection on thoracic tomography images: preliminary evaluation of a computer-aided diagnosis system. Med. Phys. 29(11), 2552–2558 (2002)
Xu, N., Ahuja, N., Bansal, R.: Automated lung nodule segmentation using dynamic programming and EM based classification. In: Proc. SPIE, vol. 4684, pp. 666–676 (2002)
Penedo, M., Cabello, A., et al.: Computed-aided diagnosis: A neural network based approach to lung nodule detection. IEEE Trans. on Medical Imaging 17(6), 872–880 (1998)
Lee, Y., Hara, T., Fujita, H., Itoh, S., Ishigaki, T.: Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans. on Medical Imaging 20(7), 595–604 (2001)
Brown, M.S., McNitt-Gray, M.F., Goldin, J.G., Suh, R.D., Sayre, J.W., Aberle, D.R.: Patient-specific models for lung nodule detection and surveillance in CT images. IEEE Trans. on Medical Imaging 20(12), 1242–1250 (2001)
Yankelevitz, D., et al.: Small pulmonary nodules: Volumetrically determined growth rates based on CT evaluation. Radiology 217, 251–256 (2000)
Prêteux, F.: On a distance function approach for gray-level mathematical morphology. In: Dekker, M., Dougherty, E.R. (eds.) Mathematical morphology in image processing (1992)
Fetita, C., Prêteux, F.: Bronchial tree modeling and 3D reconstruction. In: Proc. SPIE, vol. 4121, pp. 16–29 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fetita, C.I., Prêteux, F., Beigelman-Aubry, C., Grenier, P. (2003). 3D Automated Lung Nodule Segmentation in HRCT. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39899-8_77
Download citation
DOI: https://doi.org/10.1007/978-3-540-39899-8_77
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20462-6
Online ISBN: 978-3-540-39899-8
eBook Packages: Springer Book Archive