Abstract
We study several complexity parameters for first-order formulas and their suitability for first order learning models. We show that the standard notion of size is not captured by sets of parameters that are used in the literature. We then identify an alternative notion of size and a simple set of parameters that are useful in this sense. Matching VC-dimension lower bounds complete the picture showing that these parameters are indeed crucial.
This work has been partly supported by NSF Grant IIS-0099446.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)
Arias, M., Khardon, R.: Learning closed horn expressions. Information and Computation, 214–240 (2002)
Arias, M., Khardon, R., Servedio, R.A.: Polynomial certificates for propositional classes. In: Proceedings of the Conference on Computational Learning Theory (2003)
Arimura, H.: Learning acyclic first-order Horn sentences from entailment. In: Li, M. (ed.) ALT 1997. LNCS (LNAI), vol. 1316, Springer, Heidelberg (1997)
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM 36(4), 929–965 (1989)
Cohen, W.: PAC-learning recursive logic programs: Efficient algorithms. Journal of Artificial Intelligence Research 2, 501–539 (1995)
De Raedt, L., Dzeroski, S.: First order jk-clausal theories are PAC-learnable. Artificial Intelligence 70, 375–392 (1994)
Džeroski, S., Muggleton, S., Russell, S.: PAC-learnability of determinate logic programs. In: Haussler, D. (ed.) Proceedings of the Conference on Computational Learning Theory, Pittsburgh, PA, pp. 128–135. ACM Press, New York (1992)
Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A general lower bound on the number of examples needed for learning. Information and Computation 82(3), 247–251 (1989)
Frazier, M., Pitt, L.: Learning from entailment: An application to prepositional Horn sentences. In: Proceedings of the International Conference on Machine Learning, Amherst, MA, pp. 120–127. Morgan Kaufmann, San Francisco (1993)
Grohe, M., Turán, G.: Learnability and definability in trees and similar structures. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 645–658. Springer, Heidelberg (2002)
Hegedus, T.: On generalized teaching dimensions and the query complexity of learning. In: Proceedings of the Conference on Computational Learning Theory, pp. 108–117. ACM Press, New York (1995)
Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., Wilkins, D.: How many queries are needed to learn? Journal of the ACM 43(5), 840–862 (1996)
Horváth, T., Turán, G.: Learning logic programs with structured background knowledge. Artificial Intelligence 128(1-2), 31–97 (2001)
Khardon, R.: Learning function free Horn expressions. Machine Learning 37, 241–275 (1999)
Khardon, R.: Learning range restricted Horn expressions. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 111–125. Springer, Heidelberg (1999)
Kietz, J.-U., Dzeroski, S.: Inductive logic programming and learnability. SIGART Bulletin 5(1), 22–32 (1994)
Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
Maass, W., Turan, G.: On learnability and predicate logic (extended abstract). In: Proceedings of the 4th Bar-Ilan Symposium on Foundations of AI, BISFAI (1995)
Maass, W., Turán, G.: Lower bound methods and separation results for on-line learning models. Machine Learning 9, 107–145 (1992)
Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Muggleton, S. (ed.) Inductive Logic Programming, pp. 281–298. Academic Press, London (1992)
Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. The Journal of Logic Programming 19 and 20, 629–680 (1994)
Rao, K., Sattar, A.: Learning from entailment of logic programs with local variables. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 143–157. Springer, Heidelberg (1998)
Reddy, C., Tadepalli, P.: Learning Horn definitions with equivalence and membership queries. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 243–255. Springer, Heidelberg (1997)
Reddy, C., Tadepalli, P.: Learning first order acyclic Horn programs from entailment. In: Page, D.L. (ed.) ILP 1998. LNCS (LNAI), vol. 1446, pp. 23–37. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arias, M., Khardon, R. (2003). Complexity Parameters for First-Order Classes. In: Horváth, T., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2003. Lecture Notes in Computer Science(), vol 2835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39917-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-39917-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20144-1
Online ISBN: 978-3-540-39917-9
eBook Packages: Springer Book Archive