Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Complexity Parameters for First-Order Classes

  • Conference paper
Inductive Logic Programming (ILP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2835))

Included in the following conference series:

Abstract

We study several complexity parameters for first-order formulas and their suitability for first order learning models. We show that the standard notion of size is not captured by sets of parameters that are used in the literature. We then identify an alternative notion of size and a simple set of parameters that are useful in this sense. Matching VC-dimension lower bounds complete the picture showing that these parameters are indeed crucial.

This work has been partly supported by NSF Grant IIS-0099446.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)

    Google Scholar 

  2. Arias, M., Khardon, R.: Learning closed horn expressions. Information and Computation, 214–240 (2002)

    Google Scholar 

  3. Arias, M., Khardon, R., Servedio, R.A.: Polynomial certificates for propositional classes. In: Proceedings of the Conference on Computational Learning Theory (2003)

    Google Scholar 

  4. Arimura, H.: Learning acyclic first-order Horn sentences from entailment. In: Li, M. (ed.) ALT 1997. LNCS (LNAI), vol. 1316, Springer, Heidelberg (1997)

    Google Scholar 

  5. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM 36(4), 929–965 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen, W.: PAC-learning recursive logic programs: Efficient algorithms. Journal of Artificial Intelligence Research 2, 501–539 (1995)

    MATH  Google Scholar 

  7. De Raedt, L., Dzeroski, S.: First order jk-clausal theories are PAC-learnable. Artificial Intelligence 70, 375–392 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Džeroski, S., Muggleton, S., Russell, S.: PAC-learnability of determinate logic programs. In: Haussler, D. (ed.) Proceedings of the Conference on Computational Learning Theory, Pittsburgh, PA, pp. 128–135. ACM Press, New York (1992)

    Google Scholar 

  9. Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A general lower bound on the number of examples needed for learning. Information and Computation 82(3), 247–251 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frazier, M., Pitt, L.: Learning from entailment: An application to prepositional Horn sentences. In: Proceedings of the International Conference on Machine Learning, Amherst, MA, pp. 120–127. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  11. Grohe, M., Turán, G.: Learnability and definability in trees and similar structures. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 645–658. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Hegedus, T.: On generalized teaching dimensions and the query complexity of learning. In: Proceedings of the Conference on Computational Learning Theory, pp. 108–117. ACM Press, New York (1995)

    Chapter  Google Scholar 

  13. Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., Wilkins, D.: How many queries are needed to learn? Journal of the ACM 43(5), 840–862 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Horváth, T., Turán, G.: Learning logic programs with structured background knowledge. Artificial Intelligence 128(1-2), 31–97 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Khardon, R.: Learning function free Horn expressions. Machine Learning 37, 241–275 (1999)

    Article  MATH  Google Scholar 

  16. Khardon, R.: Learning range restricted Horn expressions. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 111–125. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Kietz, J.-U., Dzeroski, S.: Inductive logic programming and learnability. SIGART Bulletin 5(1), 22–32 (1994)

    Article  Google Scholar 

  18. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  19. Maass, W., Turan, G.: On learnability and predicate logic (extended abstract). In: Proceedings of the 4th Bar-Ilan Symposium on Foundations of AI, BISFAI (1995)

    Google Scholar 

  20. Maass, W., Turán, G.: Lower bound methods and separation results for on-line learning models. Machine Learning 9, 107–145 (1992)

    MATH  Google Scholar 

  21. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Muggleton, S. (ed.) Inductive Logic Programming, pp. 281–298. Academic Press, London (1992)

    Google Scholar 

  22. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. The Journal of Logic Programming 19 and 20, 629–680 (1994)

    Article  Google Scholar 

  23. Rao, K., Sattar, A.: Learning from entailment of logic programs with local variables. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 143–157. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Reddy, C., Tadepalli, P.: Learning Horn definitions with equivalence and membership queries. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 243–255. Springer, Heidelberg (1997)

    Google Scholar 

  25. Reddy, C., Tadepalli, P.: Learning first order acyclic Horn programs from entailment. In: Page, D.L. (ed.) ILP 1998. LNCS (LNAI), vol. 1446, pp. 23–37. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arias, M., Khardon, R. (2003). Complexity Parameters for First-Order Classes. In: Horváth, T., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2003. Lecture Notes in Computer Science(), vol 2835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39917-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39917-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20144-1

  • Online ISBN: 978-3-540-39917-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics