Abstract
This paper looks at Coppel’s axioms for convexity, and shows how they can be applied to discrete spaces. Two structures for a discrete geometry are considered: oriented matroids, and cell complexes. Oriented matroids are shown to have a structure which naturally satisfies the axioms for being a convex geometry. Cell complexes are shown to give rise to various different notions of convexity, one of which satisfies the convexity axioms, but the others also provide valid notions of convexity in particular contexts. Finally, algorithms are investigated to validate the sets of a matroid, and to compute the convex hull of a subset of an oriented matroid.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented Matroids. Encyclopedia of Mathematics and its Applications, vol. 46. CUP (1999)
Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)
Cohn, A.G., Bennett, B., et al.: Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1, 275–316 (1997)
Coppel, W.A.: Foundations of Convex Geometry. Cambridge University Press, Cambridge (1998)
de Berg, M., van Krevald, M., Overmars, M., Schwarzkopf, O.: Computational Geometry Algorithms and Applications. Springer, Heidelberg (1999)
Eckhardt, U.: Digital lines and digital convexity. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–228. Springer, Heidelberg (2002)
Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999)
Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)
Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 46, 141–161 (1989)
Kovalevsky, V.A.: Finite topology and image analysis. Advances in Electronics and Electron Physics 84, 197–259 (1992)
Masolo, C., Vieu, L.: Atomicity vs Infinite divisibility of space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 235–250. Springer, Heidelberg (1999)
Oxley, J.G.: Matroid Theory. Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford (1992)
Rosenfeld, A.: Digital topology. American Mathematical Monthly 86(8), 621–630 (1979)
Roy, A.J.O., Stell, J.G.: A qualitative account of discrete space. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 276–290. Springer, Heidelberg (2002)
Stell, J.G.: The representation of discrete multi-resolution spatial knowledge. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of KR 2000, pp. 38–49. Morgan Kaufmann, San Francisco (2000)
von Randow, R.: Introduction to the Theory of Matroids. Lecture Notes in Economics and Mathematical Systems. Springer, Heidelberg (1975)
Roger Webster. Convexity. OUP (1994)
Webster, J.: Cell complexes and digital convexity. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 272–284. Springer, Heidelberg (2002)
Webster, J.: Cell complexes, oriented matroids and digital geometry. Theoretical Computer Science (to appear)
Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)
Winter, S., Frank, A.U.: Topology in raster and vector representation. Geoinformatica 4(1), 35–65 (2000)
Winter, S.: Topological relations between discrete regions. LNCS, vol. 951, pp. 310–327 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Roy, A.J., Stell, J.G. (2003). Convexity in Discrete Space. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds) Spatial Information Theory. Foundations of Geographic Information Science. COSIT 2003. Lecture Notes in Computer Science, vol 2825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39923-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-39923-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20148-9
Online ISBN: 978-3-540-39923-0
eBook Packages: Springer Book Archive