Abstract
This paper proposes a set of tools to analyse the geometry of multidimensional digital surfaces. Our approach is based on several works of digital topology and discrete geometry: representation of digital surfaces, bel adjacencies and digital surface tracking, 2D tangent computation by discrete line recognition, 3D normal estimation from slice contours. The main idea is to notice that each surface element is the crossing point of n-1 discrete contours lying on the surface. Each of them can be seen as a 4-connected 2D contour. We combine the directions of the tangents extracted on each of these contours to compute the normal vector at the considered surface element. We then define the surface area from the normal field. The presented geometric estimators have been implemented in a framework able to represent subsets of n-dimensional spaces. As shown by our experiments, this generic implementation is also efficient.
Chapter PDF
Similar content being viewed by others
References
Artzy, E., Frieder, G., Herman, G.T.: The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Computer Graphics and Image Processing 15, 1–24 (1981)
Braquelaire, J.P., Vialard, A.: Euclidean paths: a new representation of boundary of discrete regions. Graphical Models and Image Processing 61, 16–43 (1999)
Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, France (December 2002)
Debled-Renesson, I., Reveilles, J.P.: A linear algorithm for segmentation of discrete curves. International Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)
Kong, T.Y., Kopperman, R.D., Meyer, P.R.: A topological approach to digital topology. Am. Math. Monthly 98, 901–917 (1991)
Kovalevsky, V.A.: Finite Topology as Applied to Image Analysis. Computer Vision, Graphics, and Image Processing 46(2), 141–161 (1989)
Lachaud, J.-O.: Coding cells of multidimensional digital spaces to write generic digital topology and geometry algorithms. Research Report 1283-02, LaBRI, University Bordeaux 1, Talence, France (2002)
Lachaud, J.-O.: Coding cells of digital spaces: a framework to write generic digital topology algorithms. In: Proc. Int. Work. Combinatorial Image Analysis (IWCIA 2003), Palermo, Italy, ENDM. Elsevier, Amsterdam (2003) (to appear)
Lenoir, A.: Des Outils pour les Surfaces Discrètes. Estimation d’Invariants Géométriques. Préservation de la Topologie. Tracé de Géodésiques. Visualisation. PhD thesis, Université de Caen, France (September 1999)
Lenoir, A., Malgouyres, R., Revenu, M.: Fast computation of the normal vector field of the surface of a 3D discrete object. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 101–112. Springer, Heidelberg (1996)
Malandain, G.: On topology in multidimensional discrete spaces. Research Report 2098, INRIA, France (1993)
Reveillès, J.P.: Géométrie discrète, Calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, France (1991)
Tellier, P., Debled-Rennesson, I.: 3D discrete normal vectors. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 447–457. Springer, Heidelberg (1999)
Udupa, J.K.: Multidimensional Digital Boundaries. CVGIP: Graphical Models and Image Processing 56(4), 311–323 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lachaud, JO., Vialard, A. (2003). Geometric Measures on Arbitrary Dimensional Digital Surfaces. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds) Discrete Geometry for Computer Imagery. DGCI 2003. Lecture Notes in Computer Science, vol 2886. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39966-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-540-39966-7_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20499-2
Online ISBN: 978-3-540-39966-7
eBook Packages: Springer Book Archive