Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spatio-temporal QoS Pattern Analysis in Large Scale Internet Environment

  • Conference paper
Interactive Multimedia on Next Generation Networks (MIPS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2899))

Included in the following conference series:

Abstract

For enhanced Quality of Service (QoS) provision of multimedia applications in Internet environment, there is a need of data mining tools supporting the automated analysis of QoS behaviour and dependencies for the purpose of modelling and forecasting, QoS planning and anomaly detection. This paper presents a data mining technology for spatio-temporal QoS pattern analysis including automated extraction and description, similarity matching and dependency maintenance of patterns in telecommunication networks. The technology is based on selection and definition of patterns from measured time series data sequences of QoS parameters using an appropriate pattern description language, pattern matching algorithms with different options for pattern similarity analysis and data mining interface supporting the network engineer in QoS pattern analysis considering temporal and spatial constraints. The building of an appropriate archive of detected similar patterns in given spatio-temporal context, i.e. pattern analysis data base, is directly concerned with for solving of specific QoS data mining task. The described technology is developed in the framework of INTERMON project for integrated QoS analysis in a large scale inter-domain environment based on interaction with monitoring, topology discovery and traffic analysis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  2. Keogh, E., Lonardi, S., Chiu, B.: Finding Surprising Patterns in a Time Series Database in Linear Time and Space. In: SIGKDD 2002, Edmonton, Canada (July 2002)

    Google Scholar 

  3. Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource Consumption in Network Traffic. In: SIGCOMM 2003 Conference (August 2003)

    Google Scholar 

  4. Advanced architecture for INTER-domain quality of service MONitoring, modelling and visualisation. INTERMON project, http://www.ist-intermon.org

  5. Keogh, E., Hochheiser, H., Shneiderman, B.: An Augmented Visual Query Mechanism for Finding Patterns in Time Series Data, University of Maryland, Techical Reports, CS-TR- 4398, http://www.cs.umd.edu/Library/TRs/

  6. van Wijk, J.J., van Selow, E.R.: Cluster and Calendar based Visualization of Time Series Data. In: IEEE Symposium on Information Visualization, San Francisco (1999)

    Google Scholar 

  7. QueryScetch -, http://www.bewitched.com/projects/querysketch

  8. Papagiannali, K., Moon, S., Fraleigh, C., Thiran, P., Tobagi, F., Diod, C.: Analysis of measured single-hop delay from an operational backbone. In: INFOCOM (2002)

    Google Scholar 

  9. Miloucheva, I., Anzaloni, A., Müller, E.: A practical approach for QoS forecasting considering outliers, IPS, Salzburg (2003), http://www.ist-intermon.org

  10. Roddick, J.F., Spiliopoulou, M.: A Bibliography of Temporal, Spatial and Spatio- Temporal Data Mining Research. In: ACM SIGKDD (June 1999)

    Google Scholar 

  11. NLANR Surveyor, http://dast.nlanr.net/Articles/measurements/surveyor.html

  12. Salza, S., Draoli, M., Gaibisso, C., Laureti Palma, A., Puccinelli, R.: Methods and Tools for the Objective Evaluation of Voice-over-IP communications. INET (2000)

    Google Scholar 

  13. Cortell, L., Logg, C.: Throughput Time Series Patterns (Diurnal and Step Functions), http://www.slac.stanford.edu/comp/net/pattern/diurnal.html

  14. Agrawal, R., Psaila, G., Wimmers, E.L., Zait, M.: Quering Shapes of Histories. In: Proc. 21th International Conference on Very Large Data Bases (VLDB 1995) (1995)

    Google Scholar 

  15. Gutierrez, P.A.A., Miloucheva, I.: Analysis of end-to-end QoS behaviour in inter-domain environment, IPS, Salzburg (2003), http://www.ist-intermon.org

  16. Pfeiffenberger, T., Miloucheva, I., Hofmann, U., Nassri, A.: Inferencing of inter-domain path characteristics, IPS, Salzburg (2003), http://www.ist-intermon.org

  17. Raspall, F., Tartarelli, S., Molina, M., Quittek, J.: Implementing an IETF IPFIX meter, IPS, Salzburg (2003), http://www.ist-intermon.org

  18. Michaelis, S., Seger, J.: Concept of configurable filters for Visual Data Mining System, IPS, Salzburg (2003), http://www.ist-intermon.org

  19. Kock, A.: Flexibke Traffic Matrix Analyser for Inter-domain Network Operation and Planning, IPS, Salzburg (2003), http://www.ist-intermon.org

  20. Hofmann, U.: Trace based traffic modelling, IPS (2003), http://www.ist-intermon.org

  21. Baumgartner, F., Scheidegger, M., Braun, T.: Enhancing Discrete Event Network Simulatord with Analytical Network Cloud Models, IPS, Salzburg (2003), http://www.ist-intermon.org

  22. Haber, P., Bergholz, G., Hofmann, U., Miloucheva, I.: Multi-class signal flow model for inter-domain traffic flow simulation, IPS (2003), http://www.ist-intermon.org

  23. Mahr, T., Dreillinger, T., Vidacs, A.: Time Series Based Simulation Architecture. IPS, Salzburg (2003), http://www.ist-intermon.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miloucheva, I., Hofmann, U., Gutiérrez, P.A.A. (2003). Spatio-temporal QoS Pattern Analysis in Large Scale Internet Environment. In: Ventre, G., Canonico, R. (eds) Interactive Multimedia on Next Generation Networks. MIPS 2003. Lecture Notes in Computer Science, vol 2899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40012-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40012-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20534-0

  • Online ISBN: 978-3-540-40012-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics