Abstract
For enhanced Quality of Service (QoS) provision of multimedia applications in Internet environment, there is a need of data mining tools supporting the automated analysis of QoS behaviour and dependencies for the purpose of modelling and forecasting, QoS planning and anomaly detection. This paper presents a data mining technology for spatio-temporal QoS pattern analysis including automated extraction and description, similarity matching and dependency maintenance of patterns in telecommunication networks. The technology is based on selection and definition of patterns from measured time series data sequences of QoS parameters using an appropriate pattern description language, pattern matching algorithms with different options for pattern similarity analysis and data mining interface supporting the network engineer in QoS pattern analysis considering temporal and spatial constraints. The building of an appropriate archive of detected similar patterns in given spatio-temporal context, i.e. pattern analysis data base, is directly concerned with for solving of specific QoS data mining task. The described technology is developed in the framework of INTERMON project for integrated QoS analysis in a large scale inter-domain environment based on interaction with monitoring, topology discovery and traffic analysis tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Heidelberg (2002)
Keogh, E., Lonardi, S., Chiu, B.: Finding Surprising Patterns in a Time Series Database in Linear Time and Space. In: SIGKDD 2002, Edmonton, Canada (July 2002)
Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource Consumption in Network Traffic. In: SIGCOMM 2003 Conference (August 2003)
Advanced architecture for INTER-domain quality of service MONitoring, modelling and visualisation. INTERMON project, http://www.ist-intermon.org
Keogh, E., Hochheiser, H., Shneiderman, B.: An Augmented Visual Query Mechanism for Finding Patterns in Time Series Data, University of Maryland, Techical Reports, CS-TR- 4398, http://www.cs.umd.edu/Library/TRs/
van Wijk, J.J., van Selow, E.R.: Cluster and Calendar based Visualization of Time Series Data. In: IEEE Symposium on Information Visualization, San Francisco (1999)
QueryScetch -, http://www.bewitched.com/projects/querysketch
Papagiannali, K., Moon, S., Fraleigh, C., Thiran, P., Tobagi, F., Diod, C.: Analysis of measured single-hop delay from an operational backbone. In: INFOCOM (2002)
Miloucheva, I., Anzaloni, A., Müller, E.: A practical approach for QoS forecasting considering outliers, IPS, Salzburg (2003), http://www.ist-intermon.org
Roddick, J.F., Spiliopoulou, M.: A Bibliography of Temporal, Spatial and Spatio- Temporal Data Mining Research. In: ACM SIGKDD (June 1999)
NLANR Surveyor, http://dast.nlanr.net/Articles/measurements/surveyor.html
Salza, S., Draoli, M., Gaibisso, C., Laureti Palma, A., Puccinelli, R.: Methods and Tools for the Objective Evaluation of Voice-over-IP communications. INET (2000)
Cortell, L., Logg, C.: Throughput Time Series Patterns (Diurnal and Step Functions), http://www.slac.stanford.edu/comp/net/pattern/diurnal.html
Agrawal, R., Psaila, G., Wimmers, E.L., Zait, M.: Quering Shapes of Histories. In: Proc. 21th International Conference on Very Large Data Bases (VLDB 1995) (1995)
Gutierrez, P.A.A., Miloucheva, I.: Analysis of end-to-end QoS behaviour in inter-domain environment, IPS, Salzburg (2003), http://www.ist-intermon.org
Pfeiffenberger, T., Miloucheva, I., Hofmann, U., Nassri, A.: Inferencing of inter-domain path characteristics, IPS, Salzburg (2003), http://www.ist-intermon.org
Raspall, F., Tartarelli, S., Molina, M., Quittek, J.: Implementing an IETF IPFIX meter, IPS, Salzburg (2003), http://www.ist-intermon.org
Michaelis, S., Seger, J.: Concept of configurable filters for Visual Data Mining System, IPS, Salzburg (2003), http://www.ist-intermon.org
Kock, A.: Flexibke Traffic Matrix Analyser for Inter-domain Network Operation and Planning, IPS, Salzburg (2003), http://www.ist-intermon.org
Hofmann, U.: Trace based traffic modelling, IPS (2003), http://www.ist-intermon.org
Baumgartner, F., Scheidegger, M., Braun, T.: Enhancing Discrete Event Network Simulatord with Analytical Network Cloud Models, IPS, Salzburg (2003), http://www.ist-intermon.org
Haber, P., Bergholz, G., Hofmann, U., Miloucheva, I.: Multi-class signal flow model for inter-domain traffic flow simulation, IPS (2003), http://www.ist-intermon.org
Mahr, T., Dreillinger, T., Vidacs, A.: Time Series Based Simulation Architecture. IPS, Salzburg (2003), http://www.ist-intermon.org
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Miloucheva, I., Hofmann, U., Gutiérrez, P.A.A. (2003). Spatio-temporal QoS Pattern Analysis in Large Scale Internet Environment. In: Ventre, G., Canonico, R. (eds) Interactive Multimedia on Next Generation Networks. MIPS 2003. Lecture Notes in Computer Science, vol 2899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40012-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-40012-7_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20534-0
Online ISBN: 978-3-540-40012-7
eBook Packages: Springer Book Archive