Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Set-Permutation-Occurrence Matrix Based Texture Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2652))

Included in the following conference series:

  • 971 Accesses

Abstract

We have investigated a combination of statistical modelling and expectation maximisation for a texture based approach to the segmentation of mammographic images. Texture modelling is based on the implicit incorporation of spatial information through the introduction of a set-permutation-occurrence matrix. Statistical modelling is used for data generalisation and noise removal purposes. Expectation maximisation modelling of the spatial information in combination with the statistical modelling is evaluated. The developed segmentation results are used for automatic mammographic risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haralick, M.W.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  2. Conners, R.W., Harlow, C.A.: A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(3), 204–222 (1980)

    Article  Google Scholar 

  3. Pentland, A.P.: Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 661–674 (1984)

    Article  Google Scholar 

  4. Reed, T.R., Dubuf, J.M.H.: A review of recent texture segmentation and feature-extraction techniques. Computer Vision, Graphics and Image Processing 57(3), 359–372 (1993)

    Article  Google Scholar 

  5. Wolfe, J.N.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37(5), 2486–2492 (1976)

    Article  Google Scholar 

  6. Oza, A.M., Boyd, N.F.: Mammographic parenchymal patterns: a marker of breast cancer risk. Epidemiology Review 15, 196–208 (1993)

    Article  Google Scholar 

  7. Karssemeijer, N.: Automated classification of parenchymal patterns in mammograms. Phys. Med. Biol. 43, 365–378 (1998)

    Article  Google Scholar 

  8. Blot, L., Denton, E.R.E., Zwiggelaar, R.: Risk assessment: the use of background texture in mammographic imaging. In: 6th International Workshop on Digital Mammography, Bremen, Germany, pp. 541–543 (2002)

    Google Scholar 

  9. Byng, J.W., Yaffe, M.J., Lockwood, G.A., Little, L.E., Tritchler, D.L., Boyd, N.F.: Automated analysis of mammographic densities and breast carcinoma risk. Cancer 80(1), 66–74 (1997)

    Article  Google Scholar 

  10. Heine, J.J., Velthuizen, R.P.: A statistical methodology for mammographic density detection. Medical Physics 27, 2644–2651 (2000)

    Article  Google Scholar 

  11. Sivaramakrishna, R., Obuchowsky, N.A., Chilcote, W.A., Powell, K.A.: Automatic segmentation of mammographic density. Academic Radiology 8(3), 250–256 (2001)

    Article  Google Scholar 

  12. Zwiggelaar, R.: Separating background texture and image structure in mammograms. In: Proceedings of the 10th British Machine Vision Conference, Nottingham, UK, pp. 362–371 (1999)

    Google Scholar 

  13. Polyak, K.: On the birth of breast cancer. Biochimica et Biophysica Acta 1552, 1–13 (2001)

    Google Scholar 

  14. Demster, P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  15. McKenzie, P., Alder, M.D.: Initialising the em algorithm for use in gaussian mixture modelling. In: Proceedings of the International Workshop on Pattern Recognition in Practice IV, pp. 91–105 (1994)

    Chapter  Google Scholar 

  16. Zwiggelaar, R., Parr, T.C., Schumm, J.E., Hutt, I.W., Astley, S.M., Taylor, C.J., Boggis, C.R.M.: Model-based detection of spiculated lesions in mammograms. Medical Image Analysis 3(1), 39–62 (1999)

    Article  Google Scholar 

  17. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Book  Google Scholar 

  18. Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P., Betal, D., Savage, J.: The mammographic images analysis society digital mammogram database. In: Gale, D., Astley, Cairns (eds.) Digital Mammography, pp. 375–378. Elsevier, Amsterdam (1994)

    Google Scholar 

  19. Zwiggelaar, R., Planiol, P., Marti, J., Marti, R., Blot, L., Denton, E.R.E., Rubin, C.M.E.: Em texture segmentation of mammographic images. In: 6th International Workshop on Digital Mammography, Bremen, Germany, pp. 223–227 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zwiggelaar, R., Blot, L., Raba, D., Denton, E.R.E. (2003). Set-Permutation-Occurrence Matrix Based Texture Segmentation. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_127

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44871-6_127

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40217-6

  • Online ISBN: 978-3-540-44871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics