Abstract
We have investigated a combination of statistical modelling and expectation maximisation for a texture based approach to the segmentation of mammographic images. Texture modelling is based on the implicit incorporation of spatial information through the introduction of a set-permutation-occurrence matrix. Statistical modelling is used for data generalisation and noise removal purposes. Expectation maximisation modelling of the spatial information in combination with the statistical modelling is evaluated. The developed segmentation results are used for automatic mammographic risk assessment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Haralick, M.W.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)
Conners, R.W., Harlow, C.A.: A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(3), 204–222 (1980)
Pentland, A.P.: Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 661–674 (1984)
Reed, T.R., Dubuf, J.M.H.: A review of recent texture segmentation and feature-extraction techniques. Computer Vision, Graphics and Image Processing 57(3), 359–372 (1993)
Wolfe, J.N.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37(5), 2486–2492 (1976)
Oza, A.M., Boyd, N.F.: Mammographic parenchymal patterns: a marker of breast cancer risk. Epidemiology Review 15, 196–208 (1993)
Karssemeijer, N.: Automated classification of parenchymal patterns in mammograms. Phys. Med. Biol. 43, 365–378 (1998)
Blot, L., Denton, E.R.E., Zwiggelaar, R.: Risk assessment: the use of background texture in mammographic imaging. In: 6th International Workshop on Digital Mammography, Bremen, Germany, pp. 541–543 (2002)
Byng, J.W., Yaffe, M.J., Lockwood, G.A., Little, L.E., Tritchler, D.L., Boyd, N.F.: Automated analysis of mammographic densities and breast carcinoma risk. Cancer 80(1), 66–74 (1997)
Heine, J.J., Velthuizen, R.P.: A statistical methodology for mammographic density detection. Medical Physics 27, 2644–2651 (2000)
Sivaramakrishna, R., Obuchowsky, N.A., Chilcote, W.A., Powell, K.A.: Automatic segmentation of mammographic density. Academic Radiology 8(3), 250–256 (2001)
Zwiggelaar, R.: Separating background texture and image structure in mammograms. In: Proceedings of the 10th British Machine Vision Conference, Nottingham, UK, pp. 362–371 (1999)
Polyak, K.: On the birth of breast cancer. Biochimica et Biophysica Acta 1552, 1–13 (2001)
Demster, P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society B 39, 1–38 (1977)
McKenzie, P., Alder, M.D.: Initialising the em algorithm for use in gaussian mixture modelling. In: Proceedings of the International Workshop on Pattern Recognition in Practice IV, pp. 91–105 (1994)
Zwiggelaar, R., Parr, T.C., Schumm, J.E., Hutt, I.W., Astley, S.M., Taylor, C.J., Boggis, C.R.M.: Model-based detection of spiculated lesions in mammograms. Medical Image Analysis 3(1), 39–62 (1999)
Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)
Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P., Betal, D., Savage, J.: The mammographic images analysis society digital mammogram database. In: Gale, D., Astley, Cairns (eds.) Digital Mammography, pp. 375–378. Elsevier, Amsterdam (1994)
Zwiggelaar, R., Planiol, P., Marti, J., Marti, R., Blot, L., Denton, E.R.E., Rubin, C.M.E.: Em texture segmentation of mammographic images. In: 6th International Workshop on Digital Mammography, Bremen, Germany, pp. 223–227 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zwiggelaar, R., Blot, L., Raba, D., Denton, E.R.E. (2003). Set-Permutation-Occurrence Matrix Based Texture Segmentation. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_127
Download citation
DOI: https://doi.org/10.1007/978-3-540-44871-6_127
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40217-6
Online ISBN: 978-3-540-44871-6
eBook Packages: Springer Book Archive