Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computation on Parametric Curves with Applications in Localization and Grasping

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Summary

This paper investigates efficient curve processing that originates from the localization and grasping of 2D curved objects.

The first algorithm locates the boundary section of an object traced out by a rolling finger based on the length and total curvature information obtained with the finger’s tactile sensor. The algorithm slides an imaginary segment along the object boundary by alternatively marching its two endpoints forward, stretching or contracting the segment if necessary.

The second algorithm computes all pairs of antipodal points on an object. Two fingers placed at such a pair of points can achieve a force-closure grasp in the presence of friction. Dissecting the boundary into segments everywhere convex or everywhere concave, the algorithm marches simultaneously on every two segments with opposing normals and alternates marching with numerical bisection recursively. It builds on a procedure that constructs common tangents of two curves with quadratic local convergence.

Completeness (up to numerical resolution) of the above algorithms is established by applying curvature-based analyses. Dissection and the coupling of marching with bisection introduced in this paper are potentially applicable to optimization problems involving curves and curved surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. K. Allen and K. S. Roberts. Haptic object recognition using a multi-fingered dextrous hand. Proc. IEEE Intl. Conf. Robot, and Automat, pp. 342–347, 1989.

    Google Scholar 

  2. A. Bicchi. Hands for dextrous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot, and Automation, 16 (6): 652–662, 2000.

    Article  Google Scholar 

  3. A. Blake and M. Taylor. Planning planar grasps of smooth contours. Proc. IEEE Intl. Conf. Robot, and Automation, pp. 834–839, 1993.

    Chapter  Google Scholar 

  4. C. Cai and B. Roth. On the spatial motion of a rigid body with point contact. Proc. IEEE Intl. Conf. Robot and Automat., pp. 686–695, 1987.

    Google Scholar 

  5. B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Diamester, width, closest line pair and parametric searching. Disc. & Comp. Geometry, 10:183–196, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  6. I-M. Chen and J. W. Burdick. Finding antipodal point grasps on irregularly shaped objects. Proc. IEEE Intl. Conf. Robot, and Automation, pp. 2278–2283, 1992.

    Google Scholar 

  7. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, ii. Disc. & Comp. Geometry, 4: 387–421, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Erdmann. Shape recovery from passive locally dense tactile data. In P. K. Agarwal et al., ed., Robotics: The Algorithmic Perspective, pp. 119–132. A. K. Peters, Boston, MA, 1998.

    Google Scholar 

  9. M. A. Fischler and H. C. Wolf. Locating perceptually salient points on planax curves. IEEE Trans. Pattern Analysis and Machine Intell., 16 (2): 113–129, 1994.

    Article  Google Scholar 

  10. T. N. T. Goodman. Inflections on curves in two and three dimensions. Comp. Aided Geom. Design, 8 (l): 37–50, 1991.

    Article  MATH  Google Scholar 

  11. B. Grunbaum. A proof of Vazsonyi’s conjecture. Bulletin of Research Council Israel, 6 (A): 77–78, 1956.

    Google Scholar 

  12. J. Hong, G. Lafferriere, B. Mishra, and X. Tan. Fine manipulation with mul-tifinger hands. Proc. IEEE Intl. Conf. Robot, and Automation, pp. 1568–1573, 1990.

    Chapter  Google Scholar 

  13. Y.-B. Jia. Localization on curved objects using tactile information. Proc. IEEE/RSJ Intl. Conf. Robots and Systems, pp. 701–706, 2001.

    Google Scholar 

  14. Y.-B. Jia. Geometry and computation of antipodal points on plane curves. Tech. Report ISU-CS-01–04, Computer Science Department, Iowa State University, Ames, IA, 2001. http://www.cs.iastate.edu/~jia/papers/isu-cs-01-04.pdf/~jia/papers/isu-cs-01-04.pdf.

    Google Scholar 

  15. Y.-B. Jia. Localization and grasping of curved objects using tactile information. Tech. Report ISU-CS-01–08, Computer Science Department, Iowa State University, Ames, IA, 2001. http://www.cs.iastate.edu/~jia/papers/isu-cs-01-08.pdf/~jia/papers/isu-cs-01-08.pdf.

    Google Scholar 

  16. Y.-B. Jia. Curvature-based computation of antipodal grasps. In Proc. IEEE Intl. Conf. Robot, and Automation, pp. 1571–1577, 2002.

    Google Scholar 

  17. D. Manocha and J. F. Canny. Detecting cusps and inflection points in curves. Comp. Aided Geom. Design, 9(l):l-24, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  18. X. Markenscoff, L. Ni, and C. H. Papadimitriou. The geometry of grasping. Intl. J. Robot. Res., 9 (l): 61–74, 1990.

    Article  Google Scholar 

  19. J. Matousek and O. Schwarzkopf. A deterministic algorithm for the three-dimensional diameter problem. Comp. Geometry: Theory and Applications, 6: 253–362, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis of multifinger positive grips. Algorithmica, 2 (4): 541–558, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Mokhtarian and A. Mackworth. Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Trans. Pattern Analysis and Machine Intell., 8 (l): 34–43, 1986.

    Article  Google Scholar 

  22. M. Moll and M. A. Erdmann. Reconstructing shape from motion using tactile sensors. Proc. IEEE/RSJ Intl. Conf. Intell. Robots and Systems, pp. 692–700, 2001.

    Google Scholar 

  23. D. J. Montana. The kinematics of contact and grasp. Intl. J. Robot. Res., 7 (3): 17–32, 1988.

    Article  Google Scholar 

  24. B. O’Neill. Elementary Differential Geometry. Academic Press, Inc., 1966.

    MATH  Google Scholar 

  25. J. Ponce, D. Stam, and B. Faverjon. On computing two-finger force-closure grasps of curved 2D objects. Intl. J. Robot. Res., 12 (3): 263–273, 1993.

    Article  Google Scholar 

  26. F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM, 20 (2): 87–93, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  27. F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag, 1985.

    Google Scholar 

  28. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.Vetterling. Numerical Recipes in C. Cambridge Univ. Press, Inc., 1988.

    MATH  Google Scholar 

  29. M. Sakai. Inflection points and singularities on planar rational cubic curve segments. Comp. Aided Geom. Design, 16: 149–156, 1999.

    Article  MATH  Google Scholar 

  30. E. V. Shikin. Handbook and Atlas of Curves. CRC Press, Inc., 1995.

    Google Scholar 

  31. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, 2nd edition, 1993.

    Chapter  Google Scholar 

  32. A. C. Yao. On constructing minimum spanning trees in k-dimensional space and related problems. SIAM Journal of Computing, 11(4): 721–736, 1982.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jia, YB. (2004). Computation on Parametric Curves with Applications in Localization and Grasping. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics