Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Completeness in Differential Approximation Classes

  • Conference paper
Mathematical Foundations of Computer Science 2003 (MFCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2747))

Abstract

We study completeness in differential approximability classes. In differential approximation, the quality of an approximation algorithm is the measure of both how far is the solution computed from a worst one and how close is it to an optimal one. The main classes considered are DAPX, the differential counterpart of APX, including the NP optimization problems approximable in polynomial time within constant differential approximation ratio and the DGLO, the differential counterpart of GLO, including problems for which their local optima guarantee constant differential approximation ratio. We define natural approximation preserving reductions and prove completeness results for the class of the NP optimization problems (class NPO), as well as for DAPX and for a natural subclass of DGLO. We also define class 0-APX of the NPO problems that are not differentially approximable within any ratio strictly greater than 0 unless P = NP. This class is very natural for differential approximation, although has no sense for the standard one. Finally, we prove the existence of hard problems for a subclass of DPTAS, the differential counterpart of PTAS, the class of NPO problems solvable by polynomial time differential approximation schemata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Orponen, P., Mannila, H.: On approximation preserving reductions: complete problems and robust measures. Technical Report C-1987-28, Dept. of Computer Science, University of Helsinki, Finland (1987)

    Google Scholar 

  2. Crescenzi, P., Panconesi, A.: Completeness in approximation classes. Inform. and Comput. 93, 241–262 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complexity classes. J. Comput. System Sci. 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ausiello, G., Crescenzi, P., Protasi, M.: Approximate solutions of NP optimization problems. Theoret. Comput. Sci. 150, 1–55 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crescenzi, P., Trevisan, L.: On approximation scheme preserving reducibility and its applications. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 330–341. Springer, Heidelberg (1994)

    Google Scholar 

  6. Ausiello, G., D’Atri, A., Protasi, M.: On the structure of combinatorial problems and structure preserving reductions. In: Salomaa, A., Steinby, M. (eds.) ICALP 1977. LNCS, vol. 52. Springer, Heidelberg (1977)

    Google Scholar 

  7. Demange, M., Paschos, V.T.: On an approximation measure founded on the links between optimization and polynomial approximation theory. Theoret. Comput. Sci. 158, 117–141 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ausiello, G., Protasi, M.: NP optimization problems and local optima graph theory. In: Alavi, Y., Schwenk, A. (eds.) Combinatorics and applications. Proc. 7th Quadriennal International Conference on the Theory and Applications of Graphs, vol. 2, pp. 957–975 (1995)

    Google Scholar 

  9. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation. Combinatorial optimization problems and their approximability properties. Springer, Berlin (1999)

    MATH  Google Scholar 

  10. Ausiello, G., Bazgan, C., Demange, M., Paschos, V.T.: Completeness in differential approximation classes. Cahier du LAMSADE 204, LAMSADE, Université Paris-Dauphine (2003), Available on http://www.lamsade.dauphine.fr/cahiers.html

  11. Crescenzi, P., Kann, V., Silvestri, R., Trevisan, L.: Structure in approximation classes. SIAM J. Comput. 28, 1759–1782 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Monnot, J.: Differential approximation results for the traveling salesman and related problems. Inform. Process. Lett. 82, 229–235 (2002)

    Article  MathSciNet  Google Scholar 

  13. Hassin, R., Khuller, S.: z-approximations. J. Algorithms 41, 429–442 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bazgan, C., Paschos, V.T.: Differential approximation for optimal satisfiability and related problems. European J. Oper. Res. 147, 397–404 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Toulouse, S.: Approximation polynomiale: optima locaux et rapport différentiel. PhD thesis, LAMSADE, Université Paris-Dauphine (2001)

    Google Scholar 

  16. Ausiello, G., Protasi, M.: Local search, reducibility and approximability of NPoptimization problems. Inform. Process. Lett. 54, 73–79 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Monnot, J., Paschos, V.T., Toulouse, S.: Optima locaux garantis pour l’approximation differéntielle. Technical Report 203, LAMSADE, Université Paris-Dauphine (2002), Available on http://www.lamsade.dauphine.fr/cahdoc.html#cahiers

  18. Monnot, J., Paschos, V.T., Toulouse, S.: Approximation algorithms for the traveling salesman problem. Mathematical Methods of Operations Research 57, 387–405 (2003)

    MathSciNet  Google Scholar 

  19. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.: On syntactic versus computational views of approximability. SIAM J. Comput. 28, 164–191 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ausiello, G., Bazgan, C., Demange, M., Paschos, V.T. (2003). Completeness in Differential Approximation Classes. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45138-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40671-6

  • Online ISBN: 978-3-540-45138-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics