Abstract
We study how big the blow-up in size can be when one switches between the CNF and DNF representations of boolean functions. For a function f:{0,1}n →{0,1}, \({\mathsf{cnfsize}}\left(f\right)\) denotes the minimum number of clauses in a CNF for f; similarly, \({\mathsf{dnfsize}}\left(f\right)\) denotes the minimum number of terms in a DNF for f. For 0≤ m ≤ 2n − 1, let \({\mathsf{dnfsize}}\left(m,n\right)\) be the maximum \({\mathsf{dnfsize}}\left(f\right)\) for a function f:{0,1}n →{0,1} with \({\mathsf{cnfsize}}\left(f\right) \leq m\). We show that there are constants c 1,c 2 ≥ 1 and ε > 0, such that for all large n and all \(m \in [ \frac{1}{\epsilon}n,2^{\epsilon{n}}]\), we have
In particular, when m is the polynomial n c, we get \({\mathsf{dnfsize}} (n^c,n) = 2^{n -\theta(c^{-1}\frac{n}{\log n})}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, Department of Computer Science and Engineering, University of Washington (November 1994), Available online at www.cs.washington.edu/homes/beame/
Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathematics 25, 285–287 (1979)
Bollig, B., Wegener, I.: A very simple function that requires exponential size read-once branching programs. Information Processing Letters 66, 53–57 (1998)
Dantsin, E., Goerdt, A., Hirsch, E.A., Schöning, U.: Deterministic algorithms for k-SAT based on covering codes and local search. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 236–247. Springer, Heidelberg (2000)
Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1)n algorithm for k-SAT based on local search. Theoretical Computer Science (to appear)
Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Micali, S. (ed.) Randomness and Computation. Advances in Computing Research, vol. 5, pp. 143–170. JAI Press, Greenwich (1989)
Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: A probabilistic 3-SAT algorithm further improved. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 192–202. Springer, Heidelberg (2002)
Katajainen, J., Madsen, J.N.: Performance tuning an algorithm for compressing relational tables. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 398–407. Springer, Heidelberg (2002)
Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Applied Mathematics 10, 287–295 (1985)
Paturi, R., Pudlàk, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th IEEE Symposium on the Foundations of Computer Science, pp. 628–637 (1998)
Quine, W.V.O.: On cores and prime implicants of truth functions. American Mathematics Monthly 66, 755–760 (1959)
Razborov, A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55, 24–35 (1997)
Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica 32, 615–623 (2002)
Voigt, B., Wegener, I.: Minimal polynomials for the conjunctions of functions on disjoint variables an be very simple. Information and Computation 83, 65–79 (1989)
Wegener, I.: The Complexity of Boolean Functions. Wiley, Chichester (1987), Freely available via http://ls2-www.cs.uni-dortmund.de/~wegener
Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Miltersen, P.B., Radhakrishnan, J., Wegener, I. (2003). On Converting CNF to DNF. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-45138-9_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40671-6
Online ISBN: 978-3-540-45138-9
eBook Packages: Springer Book Archive