Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Genetic Algorithm with Automatic Parameter Adaptation for Video Segmentation

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2756))

Included in the following conference series:

Abstract

We present a novel genetic algorithm (GA) for video sequence segmentation. The novelty of the approach is that the mating rates such as crossover rate and mutation rate are not constant, but spatio-temporally varying. The variation of mating rates depends on the degree of activity of each chromosome in between the successive frames. The effectiveness of the proposed method will be extensively tested in the synthetic and natural video sequences and compared to several other GA-based segmentation method. The results show that the proposed approach is able to enhance the computational efficiency and the quality of the segmentation results than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  2. Wu, G.K., Reed, T.R.: Image sequence processing using spatiotemporal segmentation. IEEE Trans. Circuits Syst. Video Technol. 9(5), 798–807 (1999)

    Article  Google Scholar 

  3. Kim, E.Y., Hwang, S.W., Park, S.H., Kim, H.J.: Spatiotemporal Segmentation using Genetic Algorithms. Pattern Recognition 34(10), 2063–2066 (2001)

    Article  MATH  Google Scholar 

  4. Bhandarkar, S.M., Zhang, H.: Image segmentation using evolutionary computation. IEEE Trans. Evolutionary Computation. 3(1), 1–21 (1999)

    Article  Google Scholar 

  5. Andrey, P., Tarroux, P.: Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation. IEEE Trans. Pattern Anal. Machine Intell. 20(3), 659–673 (1998)

    Article  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Liu, J., Yang, Y.H.: Multiresoultion color image segmentation. IEEE Trans. PAMI 16(7), 689–700 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, E.Y., Park, S.H. (2003). A Genetic Algorithm with Automatic Parameter Adaptation for Video Segmentation. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45179-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40730-0

  • Online ISBN: 978-3-540-45179-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics