Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Segmentation of Traffic Images for Automatic Car Driving

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2003 (EUROCAST 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2809))

Included in the following conference series:

  • 682 Accesses

Abstract

This paper addresses the automatic analysis and segmentation of real-life traffic images aimed at providing the necessary and sufficient information for automatic car driving. The paper focuses on the basic task of segmenting the lane boundaries. As the general objective is to build a very robust segmentation module, able to cope with any kind of road and motorway and for any kind of surroundings and background, either rural or urban, we face a complex problem of texture analysis and classification which we have approached by applying the frequency histogram of connected elements (FHCE). To assure an efficient design of the segmentation module, a thorough experimentation with numerous traffic images has been undertaken. In particular, the optimum design of the crucial parameters of the FHCE (namely, the structurant morphological element, the connectivity level and the scanning window) has been carried out with special care. Experimental results are finally presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vlacic, L., Parent, M., Harashima, F.: Intelligent Vehicle Technologies. Butterworth Heinemann, Oxford (2001)

    Google Scholar 

  2. Handmann, U., Kalinke, T., Tzomakes, C., Werner, M., Seelen, W.V.: An image processing system for driver assistance. Image and Vision Computing 18, 367–376 (2000)

    Article  Google Scholar 

  3. Bertozzi, M., Broggi, A., Cellario, M., Fascioli, A., Lombardi, P., Porta, M.: Artificial Vision in Road Vehicles. Proceedings of the IEEE 90(7), 1258–1271 (2002)

    Article  Google Scholar 

  4. Ran, B., Liu, H.X.: Development of A Vision-Based Real Time Lane Detection and Tracking System for Intelligent Vehicles (1999)

    Google Scholar 

  5. Gonzalez, J.P., Özgüner, Ü.: Lane Detection Using Histogram-Based Segmentation and Decision Tree. In: Proc. of the IEEE Intelligent Transportation Systems, pp. 346–351 (2000)

    Google Scholar 

  6. Charbonnier, P., Nicolle, P., Guillard, Y., Charrier, J.: Road boundaries detection using color saturation. In: Proc. 9th Eur. Signal Processing Conf. (1998)

    Google Scholar 

  7. Goldbeck, J., Graeder, D., Huertgen, B., Ernst, S., Wilms, F.: Lane following combining vision and DGPS. In: Proc. IEEE IV, pp. 445–450 (1998)

    Google Scholar 

  8. Kim, K.T., Oh, S.Y., Kim, S.W., Jeong, H., Lee, C.N., Kim, B.S., Kim, C.S.: An autonomous land vehicle PRV II: Progress and performance enhancement. In: Proc. IEEE IV, pp. 264–269 (1995)

    Google Scholar 

  9. Goldbeck, J., Huertgen, B.: Lane detection and tracking by video sensors. In: Proc. IEEE Intelligent Transportation Systems, pp. 74–79 (1999)

    Google Scholar 

  10. Schneiderman, H., Nashman, M.: A discriminating feature tracker for vision-based autonomous driving. IEEE Trans. Robotics and Automation 10(6), 769–775 (1994)

    Article  Google Scholar 

  11. Konishi, S., Yuille, A.L.: Statistical cues for domain specific image segmentation with performance analysis. In: Proc. CVPR 2000, pp. 1125–1132 (2000)

    Google Scholar 

  12. Patricio, M.A., Maravall, D.: Wood Texture Analysis by Combining the Connected Elements Histogram and Artificial Neural Networks. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2085, pp. 160–167. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Maravall, D., Patricio, M.A.: Image Segmentation and Pattern Recognition: A Novel Concept, the Histogram of Connected Elements. In: Chen, D., Cheng, X. (eds.) Pattern Recognition and String Matching. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  14. Soille, P.: Morphological Image Analysis. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patricio, M.Á., Maravall, D. (2003). Segmentation of Traffic Images for Automatic Car Driving. In: Moreno-Díaz, R., Pichler, F. (eds) Computer Aided Systems Theory - EUROCAST 2003. EUROCAST 2003. Lecture Notes in Computer Science, vol 2809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45210-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45210-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20221-9

  • Online ISBN: 978-3-540-45210-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics