Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An ICA-Based Method for Poisson Noise Reduction

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2773))

  • 1062 Accesses

Abstract

Many image systems rely on photon detection as a basis of image formation. One of the major sources of error in these systems is Poisson noise due to the quantum nature of the photon detection process. Unlike additive Gaussian noise, Poisson noise is signal dependent, and consequently separating signal from noise is a very difficult task. In most current Poisson noise reduction algorithms, noisy signal is firstly pre-processed to approximate Gaussian noise and then denoise by a conventional Gaussian denoising algorithm. In this paper, based on the property that Poisson noise adapts to the intensity of signal, we develop and analyze a new method using an optimal ICA-domain filter for Poisson noise removal. The performance of this algorithm is assessed with simulated data experiments and experimental results demonstrate that this algorithm greatly improves the performance in denoising image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nowak, R.D., Baraniuk, R.: Wavelet Domain Filtering for Photon Imaging Systems. IEEE Transactions on Image Processing (May 1999)

    Google Scholar 

  2. Oja, H.E., Hoyer, P.: Image Denoising by Sparse Code Shrinkage. In: Haykin, S., Kosko, B. (eds.) Intelligent Signal Processing. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  3. Hoyer, P.: Independent Component Analysis in Image Denoising Master’s Thesis, Helsinki University of Techonology (1999)

    Google Scholar 

  4. Oktem, R., et al.: Transform Based Denoising Algorithms: Comparative Study, Tampere University of Technology (1999)

    Google Scholar 

  5. Hyvarinen, Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Liklihood Estimation. Neural Computation 11(7), 1739–1768 (1999)

    Article  Google Scholar 

  6. Nowak, R.D.: Optimal signal estimation using cross-validation. IEEE Signal Processing Letters 3(2), 23–25 (1996)

    Google Scholar 

  7. Lee, T.-W., Girolami, M., Bell, A.J., Sejnowski, T.J.: A Unifying Informationtheoretic Framework for Independent Component Analysis. Computers & Mathematics with Applications 31(11), 1–21 (2000)

    Article  MathSciNet  Google Scholar 

  8. Lee, T.-W., Girolami, M., Sejnowski, T.J.: Independent Component Analysis using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super- Gaussian Source. Neural Computation 11(2), 417–441 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, XH., Chen, YW., Nakao, Z. (2003). An ICA-Based Method for Poisson Noise Reduction. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45224-9_195

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45224-9_195

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40803-1

  • Online ISBN: 978-3-540-45224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics