Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Closed-Form Solution for Mapping General Distributions to Minimal PH Distributions

  • Conference paper
Computer Performance Evaluation. Modelling Techniques and Tools (TOOLS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2794))

Abstract

Approximating general distributions by phase-type (PH) distributions is a popular technique in queueing analysis, since the Markovian property of PH distributions often allows analytical tractability. This paper proposes an algorithm for mapping a general distribution G to a PH distribution where the goal is to find a PH distribution which matches the first three moments of G. Since efficiency of the algorithm is of primary importance, we first define a particular subset of the PH distributions, which we refer to as EC distributions. The class of EC distributions has very few free parameters, which narrows down the search space, making the algorithm efficient – In fact we provide a closed-form solution for the parameters of the EC distribution. Our solution is general in that it applies to any distribution whose first three moments can be matched by a PH distribution. Also, our resulting EC distribution requires a nearly minimal number of phases, always within one of the minimal number of phases required by any acyclic PH distribution. Lastly, we discuss numerical stability of our solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldous, D., Shepp, L.: The least variable phase type distribution is Erlang. Communications in Statistics – Stotchastic Models 3, 467–473 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Altiok, T.: On the phase-type approximations of general distributions. IIE Transactions 17, 110–116 (1985)

    Article  Google Scholar 

  3. Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Performance Evaluation 32, 245–279 (1998)

    Article  Google Scholar 

  4. Franke, H., Jann, J., Moreira, J., Pattnaik, P., Jette, M.: An evaluation of parallel job scheduling for ASCI blue-pacific. In: Proceedings of Supercomputing 1999, pp. 679–691 (November 1999)

    Google Scholar 

  5. Harchol-Balter, M., Li, C., Osogami, T., Scheller-Wolf, A., Squillante, M.S.: Analysis of task assignment with cycle stealing under central queue. In: Proceedings of ICDCS 2003, pp. 628–637 (May 2003)

    Google Scholar 

  6. Horváth, A., Telek, M.: Approximating heavy tailed behavior with phase type distributions. In: Advances in Matrix-Analytic Methods for Stochastic Models, pp. 191–214. Notable Publications (July 2000)

    Google Scholar 

  7. Horváth, A., Telek, M.: Phfit: A general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002)

    Google Scholar 

  8. Johnson, M.A.: Selecting parameters of phase distributions: Combining nonlinear programming, heuristics, and Erlang distributions. ORSA Journal on Computing 5, 69–83 (1993)

    MATH  Google Scholar 

  9. Johnson, M.A., Taaffe, M.F.: An investigation of phase-distribution momentmatching algorithms for use in queueing models. Queueing Systems 8, 129–147 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: Mixtures of Erlang distributions of common order. Communications in Statistics – Stochastic Models 5, 711–743 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: Density function shapes. Communications in Statistics – Stochastic Models 6, 283–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: Nonlinear programming approaches. Communications in Statistics – Stochastic Models 6, 259–281 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karlin, S., Studden, W.: Tchebycheff Systems: With Applications in Analysis and Statistics. John Wiley and Sons, Chichester (1966)

    MATH  Google Scholar 

  14. Khayari, R.E.A., Sadre, R., Haverkort, B.: Fitting world-wide web request traces with the EM-algorithm. Performance Evalutation 52, 175–191 (2003)

    Article  Google Scholar 

  15. Marie, R.: Calculating equilibrium probabilities for λ(n)/c k /1/n queues. In: Proceedings of Performance 1980, pp. 117–125 (1980)

    Google Scholar 

  16. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  17. Osogami, T., Harchol-Balter, M.: A closed-form solution for mapping general distributions to minimal PH distributions. Technical Report CMU-CS-03-114, School of Computer Science, Carnegie Mellon University (2003)

    Google Scholar 

  18. Osogami, T., Harchol-Balter, M.: Necessary and sufficient conditions for representing general distributions by Coxians. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 182–199. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Osogami, T., Harchol-Balter, M., Scheller-Wolf, A.: Analysis of cycle stealing with switching cost. In: Proceedings of Sigmetrics 2003, pp. 184–195 (June 2003)

    Google Scholar 

  20. Riska, A., Diev, V., Smirni, E.: Efficient fitting of long-tailed data sets into PH distributions. Performance Evaluation (2003) (to appear)

    Google Scholar 

  21. Sauer, C., Chandy, K.: Approximate analysis of central server models. IBM Journal of Research and Development 19, 301–313 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schmickler, L.: Meda: Mixed Erlang distributions as phase-type representations of empirical distribution functions. Communications in Statistics – Stochastic Models 8, 131–156 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Squillante, M.: Matrix-analytic methods in stochastic parallel-server scheduling models. In: Advances in Matrix-Analytic Methods for Stochastic Models. Notable Publications (July 1998)

    Google Scholar 

  24. Starobinski, D., Sidi, M.: Modeling and analysis of power-tail distributions via classical teletraffic methods. Queueing Systems 36, 243–267 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Telek, M., Heindl, A.: Matching moments for acyclic discrete and continuous phase-type distributions of second order. International Journal of Simulation 3, 47–57 (2003)

    Google Scholar 

  26. Whitt, W.: Approximating a point process by a renewal process: Two basic methods. Operations Research 30, 125–147 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, Y., Franke, H., Moreira, J., Sivasubramaniam, A.: An integrated approach to parallel scheduling using gang-scheduling, backfilling, and migration. IEEE Transactions on Parallel and Distributed Systems 14, 236–247 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Osogami, T., Harchol-Balter, M. (2003). A Closed-Form Solution for Mapping General Distributions to Minimal PH Distributions. In: Kemper, P., Sanders, W.H. (eds) Computer Performance Evaluation. Modelling Techniques and Tools. TOOLS 2003. Lecture Notes in Computer Science, vol 2794. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45232-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45232-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40814-7

  • Online ISBN: 978-3-540-45232-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics