Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pixel Classification by Divergence-Based Integration of Multiple Texture Methods and Its Application to Fabric Defect Detection

  • Conference paper
Pattern Recognition (DAGM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2781))

Included in the following conference series:

  • 2957 Accesses

Abstract

This paper presents and evaluates a pixel-based texture classifier that integrates multiple texture feature extraction methods through a new scheme based on the Kullback J-divergence. Experimental results show that the proposed technique yields qualitatively better image segmentations than well-known both supervised and unsupervised texture classifiers based on specific families of texture methods. A practical application to fabric defect detection is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  2. Brodatz, P.: Textures: A Photographic Albumfor Artists and Designers. Dover & Greer Publishing Company (1999)

    Google Scholar 

  3. Chang, K.I., Bowyer, K.W., Sivagurunath, M.: Evaluation of Texture Segmentation Algorithms. In: Proc. IEEECVPR, Fort Collins, USA (1999)

    Google Scholar 

  4. Deng, Y., Manjunath, B.S.: Unsupervised Segmentation of Color-Texture Regions in Images and Video. IEEE Trans. PAMI 23(8), 800–813 (2001)

    Google Scholar 

  5. Garcia, M.A., Puig, D.: Improving Texture Pattern Recognition by Integration of Multiple Texture Feature Extraction Methods. In: 16th IAPR Int. Conf. on Pattern Recognition, Quebec, Canada, vol. 3, pp. 7–10 (2002)

    Google Scholar 

  6. Kittler, J.: Feature Selection and Extraction. In: Young, T.Y., Fu, K.S. (eds.) Handbook of Pattern Recog. and Image Proc., pp. 60–81. Academic Press, London (1986)

    Google Scholar 

  7. Ma, W.Y., Manjunath, B.S.: Edge Flow: A Framework of Boundary Detection and Image Segmentation. In: IEEEInt. Conf. CVPR, Puerto Rico (1997)

    Google Scholar 

  8. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and Texture Analysis for Image Segmentation. In: Boyer, K.L., Sarkar, S. (eds.) Perceptual Organization for Artificial Vision Systems, Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  9. Mathiassen, J.R., Skavhaug, A., Bo, K.: Texture Similarity Measure Using Kullback-Leibler Divergencebetween Gamma Distributions. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 133–147. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Puig, D., Garcia, M.A.: Recognizing Specific Texture Patterns by Integration of Multiple Texture Methods. In: IEEE ICIP, Rochester, USA, vol. 1, pp. 125–128 (2002)

    Google Scholar 

  11. Puzicha, J., Hofmann, T., Buhmann, J.M.: Non-parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition, Puerto Rico, pp. 267–272 (1997)

    Google Scholar 

  12. Randen, T., Husoy, J.H.: Filtering for Texture Classification: A Comparative Study. IEEE Trans. PAMI 21(4), 291–310 (1999)

    Google Scholar 

  13. Reed, T.R., Hans du Buf, J.M.: A Review of Recent Texture Segmentation and Feature Extraction Techniques. CVGIP: Image Underst. 57(3), 359–372 (1993)

    Google Scholar 

  14. Smith, G., Burns, I.: Measuring Texture Classification Algorithms. Pattern Recognition Letters 18, 1495–1501 (1997); MeasTex Image Texture Database and Test Suite. Centre for Sensor Signal and Information Proc., Universityof Queensland, Australia, http://www.cssip.uq.edu.au/staff/meastex/meastex.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcia, M.A., Puig, D. (2003). Pixel Classification by Divergence-Based Integration of Multiple Texture Methods and Its Application to Fabric Defect Detection. In: Michaelis, B., Krell, G. (eds) Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science, vol 2781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45243-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45243-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40861-1

  • Online ISBN: 978-3-540-45243-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics