Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Generic Rough Set Inductive Logic Programming Model and Motifs in Strings

  • Conference paper
New Directions in Rough Sets, Data Mining, and Granular-Soft Computing (RSFDGrC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1711))

  • 789 Accesses

Abstract

The gRS-ILP model (generic Rough Set Inductive Logic Programming model) provides a framework for Inductive Logic Programming when the setting is imprecise and any induced logic program will not be able to distinguish between certain positive and negative examples. However, in this rough setting, where it is inherently not possible to describe the entire data with 100% accuracy, it is possible to definitively describe part of the data with 100% accuracy. The gRS-ILP model is extended in this paper to motifs in strings. An illustrative experiment is presented using the ILP system Progol on transmembrane domains in amino acid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Muggleton, S.: Inductive logic programming. New Generation Computing 8(4), 295–318 (1991)

    Article  MATH  Google Scholar 

  2. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Pawlak, Z.: Rough Sets — Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  4. Siromoney, A.: The generic Rough Set Inductive Logic Programming (gRS-ILP) model (1999) (submitted for publication)

    Google Scholar 

  5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: An overview. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–36. AAAI Press / The MIT Press (1997)

    Google Scholar 

  6. Siromoney, A.: A rough set perspective of Inductive Logic Programming. In: Raedt, L.D., Muggleton, S. (eds.) Proceedings of the IJCAI 1997 Workshop on Frontiers of Inductive Logic Programming, Nagoya, Japan, pp. 111–113 (1997)

    Google Scholar 

  7. Siromoney, A., Inoue, K.: A framework for Rough Set Inductive Logic Programming — the gRS-ILP model. In: Pacific Rim Knowledge Acquisition Workshop, Singapore, November 1998, pp. 201–217(1998)

    Google Scholar 

  8. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and Methods. Journal of Logic Programming 19(20), 629–679 (1994)

    Article  MathSciNet  Google Scholar 

  9. PIR. Protein Identification Resource. National Biomedical Research Foundation

    Google Scholar 

  10. Arikawa, S., Miyano, S., Shinohara, A., Kuhara, S., Mukouchi, Y., Shinohara, T.: A machine discovery from amino acid sequences by decision trees over regular patterns. New Generation Computing 11, 361–375 (1993)

    Google Scholar 

  11. Sakakibara, Y., Siromoney, R.: A noise model on learning sets of strings. In: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp. 295–302. ACM Press, New York (1992)

    Google Scholar 

  12. Siromoney, A., Siromoney, R.: Variations and local exceptions in Inductive Logic Programming. In: Furukawa, K., Michie, D., Muggleton, S. (eds.) Machine Intelligence, vol. 14, pp. 211–232. Oxford University Press, Oxford (1995)

    Google Scholar 

  13. Siromoney, A., Siromoney, R.: A machine learning system for identifying trans-membrane domains from amino acid sequences. Sādhanā — Indian Academy of Sciences Proceedings in Engineering Sciences — Special Issue on Intelligent Systems 21(3), 317–325 (1996)

    Google Scholar 

  14. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of protein. Journal of Molecular Biology 157, 105–132 (1982)

    Article  Google Scholar 

  15. Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siromoney, A., Inoue, K. (1999). The Generic Rough Set Inductive Logic Programming Model and Motifs in Strings. In: Zhong, N., Skowron, A., Ohsuga, S. (eds) New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. RSFDGrC 1999. Lecture Notes in Computer Science(), vol 1711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48061-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48061-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66645-5

  • Online ISBN: 978-3-540-48061-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics