Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-supervised Rectangular Classification of Binary Data

  • Conference paper
Multiple Approaches to Intelligent Systems (IEA/AIE 1999)

Abstract

Rectangular decomposition [6] has proved to be useful for supervised data classification, for learning, or data organisation, and information extraction [7]. In this paper, we propose an adaptation of rectangular decomposition to non supervised data classification. Initial experiments and comparison with main other classification methods, have given us promising results. The proposed approach is based on successive optimal rectangle selection, from which we extract different classes that give a partition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkhiter, N., Bourhfir, C., Gammoudi, M.M., Jaoua, A., Thanh, L., Reguig, M.: Décomposition rectangulaire optimale d’une relation binaire: Application aux bases de données documentaires. In: Revue INFOR, February1994, vol. 32 (1994)

    Google Scholar 

  2. Brassard, G., Bratley, P.: Algorithmique, conception et analyse. Masson, Les Presses de l’Univérsite de Montréal, pp. 197–200 (1987)

    Google Scholar 

  3. Celleux, G., Diday, E., Govaert, G., Lechevallier, Y., Ralambondrainy, H.: Classification automatique des données. Dunod informatique (1989)

    Google Scholar 

  4. Diday, E., Lemaire, J., Pouget, J., Testu, F.: Eléments d’analyse de données. Dunod 82

    Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Khcherif, R., Jaoua, A.: Rectangular Decomposition Heuristics for Documentary Databases. Information Science Journal, Intelligent Systems, Applications (1997)

    Google Scholar 

  7. Maddouri, M., Jaoua, A.: Incremental rule production: toward a uniform approach for knowledge organisation. In: Proceeding of the ninth international conference on Industrial and engineering applications of artificial intelligence and expert systems, Fukuota, Japan (June 1996)

    Google Scholar 

  8. Perin, P., Leredde, H.: Les plaques-boucles Merovingiennes. Les dossiers de l’archéologie 42 (Mars-Avril 1980)

    Google Scholar 

  9. Riguet, J.: Relations binaires, fermetures et correspondances de Galois. Bulletin de la Société mathématiques de France 76, 114–155 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sellami, H.M., Jaoua, A. (1999). Non-supervised Rectangular Classification of Binary Data. In: Imam, I., Kodratoff, Y., El-Dessouki, A., Ali, M. (eds) Multiple Approaches to Intelligent Systems. IEA/AIE 1999. Lecture Notes in Computer Science(), vol 1611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48765-4_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48765-4_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66076-7

  • Online ISBN: 978-3-540-48765-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics