Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Prediction of Newborn Sex with Neural Networks Approach to Fetal Cardiotocograms Classification

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Advances in Soft Computing ((AINSC,volume 47))

  • 865 Accesses

Summary

Cardiotocographic monitoring (CTG) is the primary biophysical method for assessment of the fetal state. It consists in analysis of fetal heart rate variability, uterine contraction activity and fetal movements signal. Visual analysis of printed cardiotocographic traces is difficult so the computerized fetal monitoring systems are a standard in clinical centres. In the proposed work we investigated the ability of the application of artificial neural networks for the prediction of newborn sex using parameters of quantitative description of CTG traces. We examined the influence of input data representation (numerical or categorical) and the influence of the gestational age on the classification quality. We obtained the classification quality at a level of 80% and therefore we may state, that there is rather a strong relation between the fetal gender and the fetal heart rate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Czogala, E., Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Physica-Verlag, Berlin (2000)

    MATH  Google Scholar 

  2. Dawes, N.W., Dawes, G.S., Moulden, M., Redman, C.W.G.: Fetal heart rate patterns in term labour vary with sex, gestational age, epidural analgesia, and fetal weight. American Journal of Obstetrics and Gynaecology 180, 181–187 (1999)

    Article  Google Scholar 

  3. Druzin, M.L., Milton, H.J., Edersheim, T.G.: Relationship of baseline fetal heart rate to gestational age and fetal sex. American Journal of Obstetrics and Gynaecology 154, 1102–1103 (1986)

    Google Scholar 

  4. Jezewski, J., Wrobel, J., Horoba, K., Kupka, T., Matonia, A.: A Centralised fetal monitoring system with hardware-based data flow control. In: Proc. of III International Conference MEDSIP Glasgow, pp. 51–54 (2006)

    Google Scholar 

  5. Jezewski, M., Wrobel, J., Horoba, K., Gacek, A., Henzel, N., Leski, J.: The prediction of fetal outcome by applying neural network for evaluation of CTG records. In: Kurzynski, M., Puchala, E., et al. (eds.) Advances in Soft Computing Series, pp. 533–540. Springer, Heidelberg (2007)

    Google Scholar 

  6. Jezewski, M., Wrobel, J., Labaj, P., Leski, J., Henzel, N., Horoba, K., Jezewski, J.: Some practical remarks on neural networks approach to fetal cardiotocograms classification. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5170–5173 (2007)

    Google Scholar 

  7. Lange, S., Van Leeuwen, P., Geue, D., Hatzmann, W., Gronemeyer, D.: Influence of gestational age, heart rate, gender and time of day on fetal heart rate variability. Medical and Biological Engineering and Computing 43, 481–486 (2005)

    Article  Google Scholar 

  8. Magenes, G., Signorini, M.G., Arduini, D.: Classification of cardiotocographic records by neural networks. In: Proc.of the IEEE International Joint Conference on Neural Networks, vol. 3, pp. 637–641 (2000)

    Google Scholar 

  9. Ogueh, O., Steer, P.: Gender does not affect fetal heart rate variation. British Journal of Obstetrics and Gynaecology, 1312–1314 (1998)

    Google Scholar 

  10. Sikora, J.: Digital analysis of cardiotocographic traces for clinical fetal outcome prediction. Clinical Perinatology and Gynaecology Supplement 21 (in polish, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ewa Pietka Jacek Kawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jezewski, M., Czabanski, R., Horoba, K., Wrobel, J., Jezewski, J. (2008). Prediction of Newborn Sex with Neural Networks Approach to Fetal Cardiotocograms Classification. In: Pietka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Soft Computing, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68168-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68168-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68167-0

  • Online ISBN: 978-3-540-68168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics