Abstract
This research explores a new method for Semantic Web service matchmaking based on iSPARQL strategies, which enables to query the Semantic Web with techniques from traditional information retrieval. The strategies for matchmaking that we developed and evaluated can make use of a plethora of similarity measures and combination functions from SimPack—our library of similarity measures. We show how our combination of structured and imprecise querying can be used to perform hybrid Semantic Web service matchmaking. We analyze our approach thoroughly on a large OWL-S service test collection and show how our initial strategies can be improved by applying machine learning algorithms to result in very effective strategies for matchmaking.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)
Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: A SPARQL Optimization Approach Based on Triple Pattern Selectivity Estimation. Technical Report IFI-2007.02, Department of Informatics, University of Zurich (2007)
Bianchini, D., Antonellis, V.D., Melchiori, M., Salvi, D.: Semantic-Enriched Service Discovery. In: ICDEW, pp. 38–47 (2006)
Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: A Structural Data Model for Objects. In: SIGMOD, pp. 58–67 (1989)
Chang, C.-C., Lin, C.-J.: LIBSVM—A Library for Support Vector Machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Cohen, W.W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: IJCAI Workshop, pp. 73–78 (2003)
Corby, O., Dieng-Kuntz, R., Gandon, F., Faron-Zucker, C.: Searching the Semantic Web: Approximate Query Processing Based on Ontologies. Intelligent Systems 21(1), 20–27 (2006)
Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecology 26(3), 297–302 (1945)
Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology Alignment with OLA. In: EON, pp. 60–69 (2004)
Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classification (2007)
Jaeger, M.C., Rojec-Goldmann, G., Mühl, G., Liebetruth, C., Geihs, K.: Ranked Matching for Service Descriptions using OWL-S. In: KiVS, pp. 91–102 (2005)
Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic Process Retrieval with iSPARQL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 609–623. Springer, Heidelberg (2007)
Kiefer, C., Bernstein, A., Stocker, M.: The Fundamentals of iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, Springer, Heidelberg (2007)
Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with OWLS-MX. In: AAMAS, pp. 915–922 (2006)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)
Lewis, D.D.: Evaluating Text Categorization. In: HLT Workshop, pp. 312–318 (1991)
Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A System for Principled Matchmaking in an Electronic Marketplace. IJEC 8(4), 9–37 (2004)
Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)
Provost, F., Fawcett, T.: Robust Classification for Imprecise Environments. Machine Learning 42(3), 203–231 (2001)
Raghavan, V.V., Bollmann, P., Jung, G.S.: Retrieval System Evaluation Using Recall and Precision: Problems and Answers. In: SIGIR, pp. 59–68 (1989)
Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)
Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic Graph Pattern Optimization Using Selectivity Estimation. In: WWW (2008)
Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, Springer, Heidelberg (2005)
Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic Service Matchmaking Among Agents in Open Information Environments. SIGMOD Rec. 28(1), 47–53 (1999)
Winkler, W.E., Thibaudeau, Y.: An Application of the Fellegi-Sunter Model of Record Linkage to The 1990 U.S. Decennial Census. Technical report, U.S. Bureau of the Census (1987)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)
Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: An IR Approach to Scalable Hybrid Query of Semantic Web Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 653–665. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kiefer, C., Bernstein, A. (2008). The Creation and Evaluation of iSPARQL Strategies for Matchmaking. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds) The Semantic Web: Research and Applications. ESWC 2008. Lecture Notes in Computer Science, vol 5021. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68234-9_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-68234-9_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68233-2
Online ISBN: 978-3-540-68234-9
eBook Packages: Computer ScienceComputer Science (R0)