Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

UMD_VDT, an Integration of Detection and Tracking Methods for Multiple Human Tracking

  • Conference paper
Multimodal Technologies for Perception of Humans (RT 2007, CLEAR 2007)

Abstract

We integrate human detection and regional affine invariant feature tracking into a robust human tracking system. First, foreground blobs are detected using background subtraction. The background model is built with a local predictive model to cope with large illumination changes. Detected foreground blobs are then used by a box tracker to establish stable tracks of moving objects. Human detection hypotheses are detected using a combination of both shape and region information through a hierarchical part-template matching method. Human detection results are then used to refine tracks for moving people. Track refinement, extension and merging are carried out with a robust tracker that is based on regional affine invariant features. We show experimental results for the separate components as well as the entire system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking, pp. 245–252. IEEE Computer Society, Washington, DC, USA (1999)

    Google Scholar 

  2. Kilger, M.: A shadow handler in a video-based real-time traffic monitoring system. In: Proc. IEEE Workshop Applications of Computer Vision, pp. 11–18. IEEE Computer Society, Los Alamitos (1992)

    Chapter  Google Scholar 

  3. Kim, K., Chalidabhongse, T., Harwood, D., Davis, L.S.: Background modeling and subtraction by codebook construction, pp. 3061–3064. IEEE Computer Society, Washington (2004)

    Google Scholar 

  4. Koller, D., Weber, J., Malik, J.: Robust multiple car tracking with occlusion reasoning, pp. 189–196. Springer, London (1994)

    Google Scholar 

  5. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: ICCV (2005)

    Google Scholar 

  6. Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)

    Google Scholar 

  7. Gavrila, D.M., Philomin, V.: Real-time object detection for smart vehicles. In: ICCV (1999)

    Google Scholar 

  8. Zhao, T., Nevatia, R.: Mcmc-based approach for human segmentation. In: CVPR (2004)

    Google Scholar 

  9. Smith, K., Perez, D.G., Odobez, J.M.: Using particles to track varying numbers of interacting people. In: CVPR (2005)

    Google Scholar 

  10. Wang, H., Suter, D., Schindler, K.: Effective appearance model and similarity measure for particle filtering and visual tracking. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 606–618. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Han, B., Davis, L.: On-line density-based appearance modeling for object tracking. In: Proc. IEEE ICCV 2005, pp. 1492–1499. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  12. Jepson, A., Fleet, D., El-Maraghi, T.: Robust online appearance models for visual tracking. IEEE Trans. PAMI 25(10) (2003)

    Google Scholar 

  13. Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. BMVC 2002 London, pp. 384–393 (2002)

    Google Scholar 

  14. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int’l J. Computer Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  15. Collins, R., Liu, Y., Leordeanu, M.: On-line selection of discriminative tracking features. IEEE Trans. PAMI 27(10), 1631–1643 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rainer Stiefelhagen Rachel Bowers Jonathan Fiscus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tran, S., Lin, Z., Harwood, D., Davis, L. (2008). UMD_VDT, an Integration of Detection and Tracking Methods for Multiple Human Tracking. In: Stiefelhagen, R., Bowers, R., Fiscus, J. (eds) Multimodal Technologies for Perception of Humans. RT CLEAR 2007 2007. Lecture Notes in Computer Science, vol 4625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68585-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68585-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68584-5

  • Online ISBN: 978-3-540-68585-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics