Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hierarchical Modeling for Computational Biology

  • Conference paper
Formal Methods for Computational Systems Biology (SFM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5016))

Abstract

Diverse hierarchies play a role in modeling and simulation for computational biology, e.g. categories, abstraction hierarchies, and composition hierarchies. Composition hierarchies seem a natural and straightforward focus for our exploration. What are model components and the requirements for a composite approach? How far do they support the quest for building blocks in computational biology? Modeling formalisms provide different means for composing a model. We will illuminate this with Devs (Discrete event systems specification) and the π calculus. Whereas in Devs distinctions are emphasized, e.g. between a system and its environment, between properties attributed to a system and the system itself, these distinctions become fluent in the compact description of the π calculus. However, both share the problem that in order to support a comfortable modeling, a series of extensions have been developed which also influence their possibility to support a hierarchical modeling. Thus, not individual formalisms but two families of formalisms and how they support a composite modeling will be presented. In computational biology one type of composite model deserves a closer inspection, as it brings together the wish to compose models and the need to describe a system at different levels in a unique manner, i.e. multi-level models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vaidehi, N., Goddard III, W.: Atomic level simulation models for biological systems. In: Bower, J., Bolouri, H. (eds.) Computational Models of Molecular and Cellular Interaction, pp. 161–188. MIT Press, Cambridge (2001)

    Google Scholar 

  2. Takahashi, K., Nanda, S., Arjunan, V., Tomita, M.: Space in systems biology of signaling pathways: towards intracellular molecular crowding in silico. FEBS letters 579(8), 1783–1788 (2005)

    Article  Google Scholar 

  3. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  4. Fishwick, P.A.: Role of process abstraction in simulation. IEEE Trans. Syst. Man Cybern. 18(1), 18–39 (1988)

    Article  Google Scholar 

  5. Overstreet, C.M., Nance, R.E., Balci, O.: Issues in enhancing model reuse. In: International Conference on Grand Challenges for Modeling and Simulation, San Antonio, Texas, USA, January 27-31 (2002)

    Google Scholar 

  6. Le Novère, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J., Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J.L., Spence, H.D., Wanner, B.L.: Minimum information requested in the annotation of biochemical models (miriam). Nature Biotechnology 23(12), 1509–1515 (2005)

    Article  Google Scholar 

  7. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular Specification of Hybrid Systems in CHARON. In: HSCC 2000: Proceedings of the Third International Workshop on Hybrid Systems: Computation and Control, pp. 6–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Fishwick, P.A., Zeigler, B.P.: A Multimodel Methodology for Qualitative Model Engineering. Modeling and Computer Simulation 2(1), 52–81 (1992)

    Article  MATH  Google Scholar 

  9. Berleant, D., Kuipers, B.: Qualitative and Quantitative Simulation: Bridging the Gap. Artificial Intelligence 95(2), 215–255 (1997)

    Article  MATH  Google Scholar 

  10. de Jong, H., Page, M., Hernandez, C., Geiselmann, J.: Qualitative simulation of genetic regulatory networks: Method and application. In: IJCAI, pp. 67–73 (2001)

    Google Scholar 

  11. Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., Simeoni, M.: Modeling cellular behavior with hybrid automata: Bisimulation and collapsing. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 57–74. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Takahashi, K., Kaizu, K., Hu, B., Tomita, M.: A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20(4), 538–546 (2004)

    Article  Google Scholar 

  13. Fisher, J., Piterman, N., Hubbard, E., Stern, M., Harel, D.: Computational insights into C. elegans vulval development. Proc. Natl. Acad. Sci. 6(102), 1951–1956 (2005)

    Article  Google Scholar 

  14. Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)

    Article  Google Scholar 

  15. Hoops, S.: Hierarchical modeling. In: Result of the SBML Composition Workshop 2007. University of Connecticut Health Center, Farmington, CT, USA (September 2007), http://sbml.org/index.php/Events/Other_Events/SBML_Composition_Workshop_2007/Hierarchical_Modeling

  16. Lakoff, G.: Women, Fire and dangerous things. University of Chicago Press (1987)

    Google Scholar 

  17. Webster, J.: Hierarchical organization of ecosystems. In: Halfon, E. (ed.) Theoretical Systems Ecology, pp. 119–129. Academic Press, London (1979)

    Google Scholar 

  18. Wiegert, R.: Holism and reductionism in ecology: Hyptohesis, scale and systems models. Oikos 53, 267–269 (1988)

    Article  Google Scholar 

  19. Bertalanffy, L.v.: General systems theory. George Braziller (1968)

    Google Scholar 

  20. Whyte, L.L., Wilson, A., Wilson, D. (eds.): Hierarchical Structures. Elsevier, Amsterdam (1969)

    Google Scholar 

  21. Pattee, H. (ed.): Hierarchy Theory. George Braziller (1973)

    Google Scholar 

  22. Ayla, F.J., Dobzhansky, T. (eds.): Studies in the philosophy of biology. University of California Press (1974)

    Google Scholar 

  23. Chwif, L., Barretto, M.R.P., Paul, R.J.: On simulation model complexity. In: WSC 2000: Proceedings of the 32nd conference on Winter simulation. Society for Computer Simulation International, San Diego, CA, USA, pp. 449–455 (2000)

    Google Scholar 

  24. Luna, J.J.: Hierarchical relation in simulation models. In: WSC 1993: Proceedings of the 25th conference on Winter simulation, pp. 132–137. ACM, New York (1993)

    Chapter  Google Scholar 

  25. Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 3rd edn. Addison-Wesley, Reading (1997)

    Google Scholar 

  26. Rosch, E.: Principles of categorization. In: Rosch, E., Lloyd, B. (eds.) Cognition and categorization, pp. 27–48, Lawrence Earlbaum (1978)

    Google Scholar 

  27. Mayr, E.: Biological classification: toward a synthesis of opposing methodologies. In: Sober, E. (ed.) Conceptual issues in Evoutionary biology, pp. 646–662. MIT Press, Cambridge (1984)

    Google Scholar 

  28. Wegner, P.: Concepts and paradigms of object-oriented programming. OOPS Messenger 1(1), 7–87 (1990)

    Article  Google Scholar 

  29. Zeigler, B.P., Sarjoughian, H.S.: Implications of M&S foundations for the V&V of large scale complex simulation models. In: Proceedings of the Foundations for V&V in the 21st Century Workshop, Laurel, MD (2002)

    Google Scholar 

  30. Fritzon, P.: Principles of object-oriented modeling and simulation with modelica 2.1. Wiley, Chichester (2003)

    Google Scholar 

  31. Tolk, A.: What comes after the semantic web – pads implications for the dynamic web. In: PADS 2006: Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation, p. 55. IEEE Computer Society, Washington (2006)

    Chapter  Google Scholar 

  32. Degenring, D., Frömel, C., Dikta, G., Takors, R.: Sensitivity analysis for the reduction of complex metabolism models. Journal of Process Control 14(7), 729–745 (2004)

    Article  Google Scholar 

  33. Boström, P., Morel, L., Walden, M.: Stepwise development of simulink models using the refinement calculus framework. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 79–93. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  34. Nicol, D., Priami, C., Nielson, H., Uhrmacher, A. (eds.): Simulation and Verification of Dynamic Systems. Dagstuhl Seminar Proceedings 0161 (2006) ISSN 1862-4405

    Google Scholar 

  35. Klir, G.: Architecture of Systems Problem Solving. Plenum Press (1985)

    Google Scholar 

  36. Sauro, H., Uhrmacher, A., Harel, D., Kwiatkowska, M., Hucka, M., Mendes, P., Shaffer, C., Stroembaeck, L., Tyson, J.: Challenges for modeling and simulation in computational biology. In: Proc. of the Winter Simulation Conference, IEEE/ACM (2006)

    Google Scholar 

  37. Szyperski, C.: Component software: beyond object-oriented programming, 2nd edn. ACM Press/Addison-Wesley Publishing Co (2002)

    Google Scholar 

  38. Verbraeck, A.: Component-based distributed simulations: the way forward? In: PADS ’04: Proceedings of the eighteenth workshop on Parallel and distributed simulation, New York, NY, USA, ACM Press (2004) 141–148

    Chapter  Google Scholar 

  39. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Gruenbauer, J., Harel, D., Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Systems. NATO Science Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104 (2005)

    Google Scholar 

  40. Janssen, T.M.V.: Compositionality (with an appendix by B. Partee). In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 417–473. Elsevier, Amsterdam (1997)

    Chapter  Google Scholar 

  41. Cambell, D.: Downward causation. In: Ayla, F., Dobzhansky, T. (eds.) Studies in the philosophy of biology, pp. 179–186. University of California Press (1974)

    Google Scholar 

  42. Tilly, C.: Micro, macro, or megrim? In: Schlumbohm, J. (ed.) Mikrogeschichte - Makrogeschichte: komplementär oder inkommensurabel? Göttinger Gespräche zur Geschichtswissenschaft, vol. 7, Wallstein Verlag (1998)

    Google Scholar 

  43. Uhrmacher, A.M.: Reasoning about changing structure, a modeling concept for ecological systems. Applied Artificial Intelligence 9(2), 157–180 (1995)

    Article  Google Scholar 

  44. Goguen, J., Varela, F.: Systems and distinctions. duality and complementarity. International journal of general systems 5, 31–43 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Heylighen, F.R.E., Demeyere, F. (eds.): Self-Steering and Cognition in Complex Systems – Towards a New Cybernetics, pp. 107–113. Gordon Breach Science (1990)

    Google Scholar 

  46. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. Academic Press, London (2000)

    Google Scholar 

  47. Chow, A.C., Zeigler, B.P.: Parallel devs: a parallel, hierarchical, modular, modeling formalism. In: WSC 1994: Proceedings of the 26th conference on Winter simulation. Society for Computer Simulation International, San Diego, CA, USA, pp. 716–722 (1994)

    Google Scholar 

  48. Degenring, D., Röhl, M., Uhrmacher, A.M.: Discrete event, multi-level simulation of metabolite channeling. Biosystems 75(1-3), 29–41 (2004)

    Article  Google Scholar 

  49. Barros, F.: Modeling Formalism for Dynamic Structure Systems. ACM Transactions on Modeling and Computer Simulation 7(4), 501–514 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Uhrmacher, A.: Dynamic Structures in Modeling and Simulation - A Reflective Approach. ACM Transactions on Modeling and Simulation 11(2), 206–232 (2001)

    Article  Google Scholar 

  51. Asperti, A., Busi, N.: Mobile petri nets. Technical Report UBLCS-96-10, University of Bologna (1996)

    Google Scholar 

  52. Busi, N.: Mobile nets. In: Ciancarini, P., Fantechi, A., Gorrieri, R. (eds.) FMOODS. IFIP Conference Proceedings, vol. 139, Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  53. Uhrmacher, A., Himmelspach, J., Röhl, M., Ewald, R.: Introducing variable ports and multi-couplings for cell biological modeling in devs. In: Proc. of the 2006 Winter Simulation Conference, pp. 832–840 (2006)

    Google Scholar 

  54. OMG.: Systems modeling language (OMG SysMLTM) v1.0. OMG Available Specification, Document Number: formal/07-09-01 (September 2007)

    Google Scholar 

  55. Kuttler, C., Uhrmacher, A.: Multi-level modeling in systems biology by discrete event approaches. IT Themenheft Systems Biology (2006)

    Google Scholar 

  56. Ewald, R., Maus, C., Rolfs, A., Uhrmacher, A.M.: Discrete event modelling and simulation in systems biology. Journal of Simulation 1(2), 81–96 (2007)

    Article  Google Scholar 

  57. Möhring, M.: Social science multilevel simulation with mimose. In: Social Science Microsimulation [Dagstuhl Seminar, May, 1995], London, UK, pp. 123–137. Springer, Heidelberg (1996)

    Google Scholar 

  58. Uhrmacher, A.M., Ewald, R., John, M., Maus, C., Jeschke, M., Biermann, S.: Combining micro and macro-modeling in devs for computational biology. In: Proc. of the 2007 Winter Simulation Conference (2007)

    Google Scholar 

  59. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  60. Priami, C.: Stochastic pi-Calculus. The Computer Journal 38(7), 578–589 (1995)

    Article  Google Scholar 

  61. Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Ciobanu, Gabriel Rozenberg, G. (eds.) Modeling in Molecular Biology, Springer, Heidelberg (2004)

    Google Scholar 

  62. Kuttler, C., Lhoussaine, C., Niehren, J.: A stochastic pi calculus for concurrent objects. In: Algebraic Biology, pp. 232–246. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  63. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative experiments. Electronic Notes in Theoretical Computer Science 164(3), 101–117 (2006)

    Article  Google Scholar 

  64. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kuttler, C., Niehren, J.: Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 24–55. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  66. Hillston, J.: Process algebras for quantitative analysis. In: Logic in Computer Science. Proceedings. 20th Annual IEEE Symposium on. LICS 2005, pp. 239–248 (2005)

    Google Scholar 

  67. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proceedings of the Pacific Symposium of Biocomputing 2001, pp. 459–470 (2001)

    Google Scholar 

  68. Kuttler, C.: Modeling Bacterial Gene Expression in a Stochastic Pi-Calculus with Concurrent Objects. PhD thesis, University of Lille 1 (2007)

    Google Scholar 

  69. Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Computational Methods in Systems Biology, pp. 184–199. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  70. Davis, P.K., Anderson, R.H.: Improving the composability of DoD models and simulations. JDMS 1(1), 5–17 (2004)

    Google Scholar 

  71. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)

    Google Scholar 

  72. Zeigler, B.P., Sarjoughian, H.S.: Introduction to DEVS modeling and simulation with JAVA: Developing component-based simulation models. Arizona Cneter for Integrative Modleing and Simulation, University of Arizona and Arizona State University, Tucson, Arizona, USA (January 2005)

    Google Scholar 

  73. Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H.: Heterogeneous concurrent modeling and design in java (volume 1: Introduction to ptolemy ii). Technical Report UCB/EECS-2007-7, EECS Department, University of California, Berkeley (January 2007)

    Google Scholar 

  74. W3C: Web services architecture W3C Working Group Note February 11 (2004), http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

  75. Harold, E.R.: Processing XML with Java. Pearson Education, London (2002)

    Google Scholar 

  76. W3C: XML Schema part 0: Primer 2nd edn W3C Recommendation (October 28, 2004), http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

  77. W3C: Semantic annotations for WSDL (2006) W3C Working Draft (September 28, 2006), http://www.w3.org/TR/2006/WD-sawsdl-20060928/

  78. Röhl, M., Morgenstern, S.: Composing simulation models using interface definitions based on web service descriptions. In: Proceedings of the 2007 Winter Simulation Conference, pp. 815–822 (2007)

    Google Scholar 

  79. W3C: Web services description language (WSDL) version 2.0 part 1: Core language (2006) W3C Candidate Recommendation (March 27, 2006), http://www.w3.org/TR/2006/CR-wsdl20-20060327

  80. Tolk, A., Muguira, J.: The level of conceptual interoperability model. In: Fall Simulation Interoperability Workshop (SISO), Orlando (September 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Bernardo Pierpaolo Degano Gianluigi Zavattaro

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maus, C., John, M., Röhl, M., Uhrmacher, A.M. (2008). Hierarchical Modeling for Computational Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds) Formal Methods for Computational Systems Biology. SFM 2008. Lecture Notes in Computer Science, vol 5016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68894-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68894-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68892-1

  • Online ISBN: 978-3-540-68894-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics