Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Admissible Fuzzy Controller in L 2 Space

  • Conference paper
New Frontiers in Applied Artificial Intelligence (IEA/AIE 2008)

Abstract

This article presents a mathematical framework for studying the existence of optimal feedback control based on IF-THEN fuzzy rules through approximate reasoning, and introduces the notion of an admissible fuzzy controller. The framework consists of two propositions: To guarantee the convergence of optimal solution, a set of fuzzy membership functions (admissible fuzzy controller) which are selected out of L 2 space is convex and compact metrizable for the weak topology. And assuming approximate reasoning to be a functional on the set of membership functions, its continuity is proved. Then, we show the existence of a fuzzy controller which minimize (maximize) the integral performance function of the nonlinear feedback system.

The paper was supported in part by Grant-in-Aid for Young Scientists (B) #19700225 from Japan Society for the Promotion of Science (JSPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shidama, Y., Yang, Y., Eguchi, M., Yamaura, H.: The compactness of a set of membership functions and its application to fuzzy optimal control. The Japan Society for Industrial and Applied Mathematics 1, 1–13 (1996)

    Google Scholar 

  2. Mitsuishi, T., Wasaki, K., Kawabe, J., Kawamoto, N.P., Shidama, Y.: Fuzzy optimal control in L 2 space. In: Proc. 7th IFAC Symposium Artificial Intelligence in Real-Time Control, pp. 173–177 (1998)

    Google Scholar 

  3. Mizumoto, M.M.: Improvement of fuzzy control (IV) - Case by product-sum-gravity method. In: Proc. 6th Fuzzy System Symposium, pp. 9–13 (1990)

    Google Scholar 

  4. Nakamori, Y., Ryoke, M.: Identification of fuzzy prediction models through hyperellipsoidal clustering. IEEE Transactions on Systems, Man and Cybernetics SMC-24(8), 1153–1173 (1994)

    Article  Google Scholar 

  5. Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. John Wiley & Sons, New York (1988)

    MATH  Google Scholar 

  6. Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feedback Control Determined by Product-Sum-Gravity Method. Journal of Nonlinear and Convex Analysis 1(2), 201–211 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Mitsuishi, T., Endou, N., Shidama, Y.: Continuity of Nakamori Fuzzy Model and Its Application to Optimal Feedback Control. In: Proc. IEEE International Conference on Systems, Man and Cybernetics, pp. 577–581 (2005)

    Google Scholar 

  8. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Leszek Borzemski Adam Grzech Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitsuishi, T., Shidama, Y. (2008). Admissible Fuzzy Controller in L 2 Space . In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds) New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science(), vol 5027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69052-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69052-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69045-0

  • Online ISBN: 978-3-540-69052-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics