Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reproducibility Analysis of Event-Related fMRI Experiments Using Laguerre Polynomials

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1294 Accesses

Abstract

In this study, we introduce the use of orthogonal causal Laguerre polynomials for analyzing data collected in event-related functional magnetic resonance imaging (fMRI) experiments. This particular family of polynomials has been widely used in the system identification literature and recommended for modeling impulse functions in BOLD-based fMRI experiments. In empirical studies, we applied Laguerre polynomials to analyze data collected in an event-related fMRI study conducted by Scott et al. (2001). The experimental study investigated neural mechanisms of visual attention in a change-detection task. By specifying a few meaningful Laguerre polynomials in the design matrix of a random effect model, we clearly found brain regions associated with trial onset and visual search. The results are consistent with the original findings in Scott et al. (2001). In addition, we found the brain regions related to the mask presence in the parahippocampal, superior frontal gyrus and inferior parietal lobule. Both positive and negative responses were also found in the lingual gyrus, cuneus and precuneus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liou, M., Su, H.-R., Lee, J.-D., Aston, J.A.D., Tsai, A.C., Cheng, P.E.: A method for generating reproducible evidence in fMRI studies. NeuroImage 29, 383–395 (2006)

    Article  Google Scholar 

  2. Huettel, S.A., Guzeldere, G., McCarthy, G.: Dissociating neural mechanisms of visual attention in change detection using functional MRI. Journal of Cognitive Neuroscience 13(7), 1006–1018 (2001)

    Article  Google Scholar 

  3. Liou, M., Su, H.-R., Lee, J.-D., Cheng, P.E., Huang, C.-C., Tsai, C.-H.: Bridging Functional MR Images and Scientific Inference: Reproducibility Maps. Journal of cognitive Neuroscience 15(7), 935–945 (2003)

    Article  Google Scholar 

  4. Saha, S., Long, C.J., Brown, E., Aminoff, E., Bar, M., Solo, V.: Hemodynamic transfer function estimation with Laguerre polynomials and confidence intervals construction from functional magnetic resonance imaging (FMRI) data. IEEE ICASSP 3, 109–112 (2004)

    Google Scholar 

  5. Andrews, G.E., Askey, R., Roy, R.: Laguerre Polynomials. In: §6.2 in Special Functions, pp. 282–293. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Arfken, G.: Laguerre Functions. In: §13.2 in Mathematical Methods for Physicists, 3rd ed., Orlando, FL, pp. 721–731. Academic Press, London (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, HR., Liou, M., Cheng, P.E., Aston, J.A.D., Lai, SH. (2008). Reproducibility Analysis of Event-Related fMRI Experiments Using Laguerre Polynomials. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics