Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nonparametric Time-Varying Phasor Estimation Using Neural Networks

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

  • 1582 Accesses

Abstract

A new approach to nonparametric signal modelling techniques for tracking time-varying phasors of voltage and current in power systems is investigated. A first order polynomial is used to approximate these signals locally on a sliding window of fixed length. Non-quadratic methods to fit the linear function to the data, give superior performance over least squares methods in terms of accuracy. But these non-quadratic methods are iterative procedures and are much slower than the least squares method. A neural network is then used to model the non-quadratic methods. Once the neural network is trained, it is much faster than the least squares and the non-quadratic methods. The paper concludes with the presentation of the representative testing results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Begovic, M., et al.: Frequency tracking in power networks in the presence of harmonics. IEEE Transactions on Power Delivery 8, 480–486 (1993)

    Article  Google Scholar 

  2. Sachdev, M., Giray, M.: A least squares technique for determining power system frequency. IEEE Transactions on PAS (1985)

    Google Scholar 

  3. Terzija, V.V., Djurić, M.B., Kovac̆ević, B.D.: Voltage phasor and local system frequency estimation using Newton type algorithm. IEEE Transactions on Power Delivery 9, 1368–1374 (1994)

    Google Scholar 

  4. Terzija, V.V., Djurić, M.B., Kovac̆ević, B.D.: A new self-tuning algorithm for the frequency estimation of distorted signals. IEEE Transactions on Power Delivery 10, 1779–1785 (1995)

    Google Scholar 

  5. Sidhu, T.S., Sachdev, M.S.: An iterative technique for fast and accurate measurement of power system frequency. IEEE Transactions on Power Delivery 13, 109–115 (1998)

    Article  Google Scholar 

  6. Hart, D., et al.: A new frequency tracking and phasor estimation algorithm for generator protection. IEEE Transactions on Power Delivery 12, 1064–1073 (1997)

    Article  Google Scholar 

  7. Benmouyal, G.: An adaptive sampling interval generator for digital relaying. IEEE Transactions on Power Delivery 4, 1602–1609 (1989)

    Article  Google Scholar 

  8. Akke, M.: Frequency estimation by demodulation of two complex signals. IEEE Transactions on Power Delivery 12, 157–163 (1997)

    Article  Google Scholar 

  9. Jordaan, J.A., van Wyk, M.A.: Nonparametric Time-Varying Phasor Estimation using Non-Quadratic Criterium. In: The Sixth IASTED International Conference on Modelling, Simulation, and Optimization, Gaborone, Botswana (2006)

    Google Scholar 

  10. Gorry, P.A.: General Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method. Analytical Chemistry 62, 570–573 (1990)

    Article  Google Scholar 

  11. Bialkowski, S.E.: Generalized Digital Smoothing Filters Made Easy by Matrix Calculations. Analytical Chemistry 61, 1308–1310 (1989)

    Article  Google Scholar 

  12. Pires, R.C., Costa, A.S., Mili, L.: Iteratively Reweighted Least-Squares State Estimation Through Givens Rotations. IEEE Transactions on Power Systems 14, 1499–1506 (1999)

    Article  Google Scholar 

  13. Bishop, C.M.: Neural Networks for Pattern Recognition, 1st edn. Clarendon Press, Oxford (1997)

    Google Scholar 

  14. Multi-Layer Perceptron (MLP), Neural Networks Lectures 5+6 (2007), http://www.cogs.susx.ac.uk/users/andrewop/Courses/NN/NNs5_6_MLP.ppt

  15. Mathworks: MATLAB Documentation - Neural Network Toolbox. Version 6.5.0.180913a Release 13 edn. Mathworks Inc., Natick, MA (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jordaan, J., van Wyk, A., van Wyk, B. (2008). Nonparametric Time-Varying Phasor Estimation Using Neural Networks. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics