Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Heap Decomposition for Concurrent Shape Analysis

  • Conference paper
Static Analysis (SAS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5079))

Included in the following conference series:

  • 557 Accesses

Abstract

We demonstrate shape analyses that can achieve a state space reduction exponential in the number of threads compared to the state-of-the-art analyses, while retaining sufficient precision to verify sophisticated properties such as linearizability. The key idea is to abstract the global heap by decomposing it into (not necessarily disjoint) subheaps, abstracting away some correlations between them. These new shape analyses are instances of an analysis framework based on heap decomposition. This framework allows rapid prototyping of complex static analyses by providing efficient abstract transformers given user-specified decomposition schemes. Initial experiments confirm the value of heap decomposition in scaling concurrent shape analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simulation. Electr. Notes Theor. Comput. Sci. 137(2), 93–110 (2005)

    Article  Google Scholar 

  3. Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin, P.A., Moir, M., Shavit, N., Steele Jr., G.L.: DCAS is not a silver bullet for nonblocking algorithm design. In: SPAA, pp. 216–224 (2004)

    Google Scholar 

  4. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free queue algorithm. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi, K., Rubio, F. (eds.) FORTE 2004. LNCS, vol. 3236, pp. 97–114. Springer, Heidelberg (2004)

    Google Scholar 

  5. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In: PLDI, pp. 266–277 (2007)

    Google Scholar 

  6. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: POPL, pp. 310–323 (2005)

    Google Scholar 

  7. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. TOPLAS 12(3), 463–492 (1990)

    Article  Google Scholar 

  8. Lev-Ami, T., Sagiv, M.: TVLA: A framework for implementing static analyses. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg (2000)

    Google Scholar 

  9. Manevich, R., Berdine, J., Cook, B., Ramalingam, G., Sagiv, M.: Shape analysis by graph decomposition. In: TACAS, pp. 3–18 (2007)

    Google Scholar 

  10. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decomposition for concurrent shape analysis. Technical Report TR-2008-01-85453, Tel Aviv University (January 2008), http://www.cs.tau.ac.il/rumster/TR-2007-11-85453.pdf

  11. Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially disjunctive heap abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279. Springer, Heidelberg (2004)

    Google Scholar 

  12. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In: PODC, pp. 267–275 (1996)

    Google Scholar 

  13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  14. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

    Article  Google Scholar 

  15. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM Almaden Research Center (April 1986)

    Google Scholar 

  16. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. draft (2008)

    Google Scholar 

  17. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent linearisable objects. In: PPOPP, pp. 129–136 (2006)

    Google Scholar 

  18. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued logic. ACM SIGPLAN Notices 36(3), 27–40 (2001)

    Article  Google Scholar 

  19. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and heterogeneous abstractions. In: PLDI, pp. 25–34 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

María Alpuente Germán Vidal

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J. (2008). Heap Decomposition for Concurrent Shape Analysis. In: Alpuente, M., Vidal, G. (eds) Static Analysis. SAS 2008. Lecture Notes in Computer Science, vol 5079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69166-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69166-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69163-1

  • Online ISBN: 978-3-540-69166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics