Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Context-Sensitive Ranking for Effective Image Retrieval

  • Conference paper
Advances in Multimedia Modeling (MMM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4351))

Included in the following conference series:

  • 868 Accesses

Abstract

Over many years, almost all research work in the content-based image retrieval (CBIR) has used Minkowski metric (or L p -norm) to measure similarity between images. However, those functions cannot adequately capture the nonlinear relationships in contextual information given by image datasets. In this paper, we present a new similarity measure reflecting the nonlinearity of contextual information. Moreover, we propose a new similarity ranking algorithm based on this similarity measure for effective CBIR. Our algorithm yields superior experimental results on real image database and demonstrates its effectiveness.

This work was supported by grant No. B1220-0501-0233 from the University Fundamental Research Program of the Ministry of Information & Communication in Republic of Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goh, K.-S., Li, B., Chang, E.: DynDex: A Dynamic and Non-metric Space Indexer. In: Proc. ACM Multimedia, pp. 466–475 (2002)

    Google Scholar 

  2. Haykin, S.: Neural Networks: A Comprehensive Foundation, Maxmillan (1994)

    Google Scholar 

  3. Ishikawa, Y., Subramanya, R., Faloutsos, C.: MindReader: Querying databases through multiple examples. In: Proc. VLDB Conf., pp. 218–227 (1998)

    Google Scholar 

  4. Ng, A.Y., Jordan, M.I., Weiss, Y.: On Spectral Clustering: Analysis and Algorithm. Advances in Neural Information Processing Systems, 14 (2002)

    Google Scholar 

  5. Rui, Y., et al.: Relevance feedback: A Power tool for interactive content-based image retrieval. IEEE Tr. Circuits and Video Technology 8(5), 644–644 (1998)

    Article  Google Scholar 

  6. Rui, Y., Huang, T., Mehrotra, S.: Content-based image retrieval with relevance feedback in MARS. In: Proc. Int’l Conf. on Image Processing (1997)

    Google Scholar 

  7. Schölkopf, B., et al.: Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. IEEE Trans. on Signal Processing 45, 2758–2765 (1997)

    Article  Google Scholar 

  8. Tong, S., Chang, E.: Support Vector Machine Active Learning for Image Retrieval. In: Proc. ACM Multimedia Conf., pp. 107–118 (2001)

    Google Scholar 

  9. De Valois, R.L., De Valois, K.K.: Spatial Vision. Oxford Science Publications (1988)

    Google Scholar 

  10. Vapnik, V.N.: Statistical Learning Theory. Wiley, NY (1998)

    MATH  Google Scholar 

  11. Wu, L., Faloutsos, C., Sycara, K., Payne, T.R.: FALCON: Feedback Adaptive Loop for Content-Based Retrieval. In: Proc. of VLDB Conf., pp. 297–306 (2000)

    Google Scholar 

  12. Wu, G., Chang, E.Y., Panda, N.: Formulating Context-dependent Similarity Functions. In: Proc. ACM Multimedia, pp. 725–734 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cha, GH. (2006). Context-Sensitive Ranking for Effective Image Retrieval. In: Cham, TJ., Cai, J., Dorai, C., Rajan, D., Chua, TS., Chia, LT. (eds) Advances in Multimedia Modeling. MMM 2007. Lecture Notes in Computer Science, vol 4351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69423-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69423-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69421-2

  • Online ISBN: 978-3-540-69423-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics