Abstract
For n = 2k, we know that the size of a smallest AND/OR/ NOT formula computing the Boolean function is exactly n 2: For any n, it is at least n 2 by classical Khrapchenko’s bound, and for n = 2k we easily obtain a formula of size n 2 by writing and recursively expanding
We show that for n = 2k the formula obtained above is an essentially unique one that computes with size n 2. In the equivalent framework of the Karchmer-Wigderson communication game, our result means that an optimal protocol for Parity of 2k variables is essentially unique.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Håstad, J.: The Shrinkage Exponent of De Morgan Formulae is 2. SIAM Journal on Computing 27(1), 48–64 (1998)
Khrapchenko, V.M.: A Method of Determining Lower Bounds for the Complexity of Π-Schemes. Mat.Zametski 10(1), 83–92 (1971) (in Russian); English translation in: Math. Notes 10(1), 474–479 (1971)
Karchmer, M., Wigderson, A.: Monotone Circuits for Connectivity Require Super-Logarithmic Depth. SIAM J. Discrete Mathematics 3(2), 255–265 (1990)
Karchmer, M.: Communication Complexity: A New Approach to Circuit Depth. MIT Press, Cambridge (1989)
Boppana, R., Sipser, M.: The Complexity of Finite Functions. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science volume A, Algorithms and Complexity. MIT Press, Cambridge (1990)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univ. Press, Cambridge (1997)
Wegener, I.: The Complexity of Boolean Functions. Wiley, Chichester (1987) (on-line copy available at the web site of ECCC under Monographs)
Arora, S., Barak, B.: Complexity Theory: A Modern Approach (to be published, 2008)
Zwick, U.: An Extension of Khrapchenko’s Theorem. Information Processing Letters 37, 215–217 (1991)
Koutsoupias, E.: Improvements on Khraphchenko’s Theorem. Information Processing Letters 116, 399–403 (1993)
Laplante, S., Lee, T., Szegedy, M.: The Quantum Adversary Method and Classical Formula Size Lower Bounds. Computational Complexity 15(2), 163–196 (2006)
Borodin, A.: Horner’s Rule is Uniquely Optimal. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 45–58. Academic Press, London (1971)
Knuth, D.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tarui, J. (2008). Smallest Formulas for Parity of 2k Variables Are Essentially Unique. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-69733-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69732-9
Online ISBN: 978-3-540-69733-6
eBook Packages: Computer ScienceComputer Science (R0)