Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Smallest Formulas for Parity of 2k Variables Are Essentially Unique

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

Abstract

For n = 2k, we know that the size of a smallest AND/OR/ NOT formula computing the Boolean function is exactly n 2: For any n, it is at least n 2 by classical Khrapchenko’s bound, and for n = 2k we easily obtain a formula of size n 2 by writing and recursively expanding

We show that for n = 2k the formula obtained above is an essentially unique one that computes with size n 2. In the equivalent framework of the Karchmer-Wigderson communication game, our result means that an optimal protocol for Parity of 2k variables is essentially unique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Håstad, J.: The Shrinkage Exponent of De Morgan Formulae is 2. SIAM Journal on Computing 27(1), 48–64 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Khrapchenko, V.M.: A Method of Determining Lower Bounds for the Complexity of Π-Schemes. Mat.Zametski 10(1), 83–92 (1971) (in Russian); English translation in: Math. Notes 10(1), 474–479 (1971)

    MATH  Google Scholar 

  3. Karchmer, M., Wigderson, A.: Monotone Circuits for Connectivity Require Super-Logarithmic Depth. SIAM J. Discrete Mathematics 3(2), 255–265 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Karchmer, M.: Communication Complexity: A New Approach to Circuit Depth. MIT Press, Cambridge (1989)

    Google Scholar 

  5. Boppana, R., Sipser, M.: The Complexity of Finite Functions. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science volume A, Algorithms and Complexity. MIT Press, Cambridge (1990)

    Google Scholar 

  6. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  7. Wegener, I.: The Complexity of Boolean Functions. Wiley, Chichester (1987) (on-line copy available at the web site of ECCC under Monographs)

    MATH  Google Scholar 

  8. Arora, S., Barak, B.: Complexity Theory: A Modern Approach (to be published, 2008)

    Google Scholar 

  9. Zwick, U.: An Extension of Khrapchenko’s Theorem. Information Processing Letters 37, 215–217 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koutsoupias, E.: Improvements on Khraphchenko’s Theorem. Information Processing Letters 116, 399–403 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Laplante, S., Lee, T., Szegedy, M.: The Quantum Adversary Method and Classical Formula Size Lower Bounds. Computational Complexity 15(2), 163–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borodin, A.: Horner’s Rule is Uniquely Optimal. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 45–58. Academic Press, London (1971)

    Google Scholar 

  13. Knuth, D.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tarui, J. (2008). Smallest Formulas for Parity of 2k Variables Are Essentially Unique. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics