Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Geometric Spanner of Objects under L 1 Distance

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

  • 1012 Accesses

Abstract

Geometric spanner is a fundamental structure in computational geometry and plays an important role in many geometric networks design applications. In this paper, we consider the following generalized geometric spanner problem under L 1 distance: Given a set of disjoint objects S, find a spanning network G with minimum size so that for any pair of points in different objects of S, there exists a path in G with length no more than t times their L 1 distance, where t is the stretch factor. Specifically, we focus on three types of objects: rectilinear segments, axis aligned rectangles, and rectilinear monotone polygons. By combining ideas of t-weekly dominating set, walls, aligned pairs and interval cover, we develop a 4-approximation algorithm (measured by the number of Steiner points) for each type of objects. Our algorithms run in near quadratic time, and can be easily implemented for practical applications.

The research of the first three authors was supported in part by National Science Foundation through CAREER award CCF-0546509 and grant IIS-0713489. The research of the last two authors was supported by the project New Horizons in Computing, Grant-in-Aid for Scientific Research on Priority Areas,MEXT Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid, M., Vigneron, A.: Sparse Geometric Graphs with Small Dilation. In: Proceedings of the 12th Computing: The Australasian Theroy Symposium, vol. 51 (2006)

    Google Scholar 

  2. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean Spanners: Short, Thin, and Lanky. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 489–498 (1995)

    Google Scholar 

  3. Arya, S., Mount, D.M., Smid, M.: Dynamic Algorithms for Geometric Spanners of Small Diameter: Randomized Rolutions. Technical Report, Max-Planck-Institut für Informatik (1994)

    Google Scholar 

  4. Arya, S., Mount, D.M., Smid, M.: Randomized and Deterministic Algorithms for Geometric Spanners of Small Diameter. In: 35th IEEE Symposium on Foundtions of Computer Science, pp. 703–712 (1994)

    Google Scholar 

  5. Asano, T., de Berg, M., Cheong, O., Everett, H., Haverkort, H., Katoh, N., Wolff, A.: Optimal Spanners for Axis-Aligned Rectangles. Comput. Geom. Theory Appl. 30(1), 59–77 (2005)

    MATH  Google Scholar 

  6. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New Spareness Results on Graph Spanners. In: Proceedings of the Eighth Annual Symposium on Computational Geometry, pp. 192–201 (1992)

    Google Scholar 

  7. Clarkson, K.L.: Approximation Algorithms for Shortest Path Motion Planning. In: Proceedings of the nineteenth annual ACM conference on Theory of computing, pp. 56–65 (1987)

    Google Scholar 

  8. Das, G., Heffernan, P., Narasimhan, G.: Optimally Sparse Spanners in 3-Dimensional Euclidean Space. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp. 53–62 (1993)

    Google Scholar 

  9. Das, G., Narasimhan, G.: A Fast Algorithm for Constructing Sparse Euclidean Spanners. In: Proceedings of the Tenth Annual Symposium on Computational Geometry, pp. 132–139 (1994)

    Google Scholar 

  10. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast Greedy Algorithms for Constructing Sparse Geometric Spanners. SIAM Journal on Computing 31(5), 1479–1500 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Keil, J.M.: Approximating the Complete Euclidean Graph. In: Proceedings of 1st Scandinavian Workshop on Algorithm Theory, pp. 208–213 (1988)

    Google Scholar 

  12. Keil, J.M., Gutwin, C.A.: Classes of Graphs which Approximate the Complete Euclidean Graph. Discrete and Computational Geometry 7, 13–28 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rupper, J., Seidel, R.: Approximating the d-dimensional Complete Euclidean Graph. In: Proceedings of 3rd Canadian Conference on Computational Geometry, pp. 207–210 (1991)

    Google Scholar 

  14. Yang, Y., Zhu, Y., Xu, J., Katoh, N.: Geometric Spanner of Segments. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 75–87. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, Y., Xu, J., Yang, Y., Katoh, N., Tanigawa, Si. (2008). Geometric Spanner of Objects under L 1 Distance. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics