Abstract
Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of the cantons of Vaud and Geneva in Western Switzerland. The unsupervised classification method, based on Ward’s classification and self-organized maps, is used to classify the municipalities of the region and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape of the region. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of activities. The method is applied to the distribution of business managers and working class at the intra-urban scale. Results show the effect of peri-urbanization of the region and can be analyzed in both transportation and social terms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schuler, M., Bassand, M.: La Suisse, une métropole mondiale? IREC. Lausanne (1985)
DaCunha, A.: La métropole absente?, IREC, Lausanne (1992)
Bassand, M.: Métropolisation et inégalités sociales. Presses Polytechniques Universitaires Romandes, Lausanne (1997)
Batty, M.: Cities and complexity. MIT Press, Cambridge (2005)
Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)
Kohonen, T.: Self-organizing maps. Springer, Heidelberg (2001)
Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)
Anselin, L.: Local indicators of spatial autocorrelation - LISA. Geographical Analysis 27, 93–115 (1995)
Turnbull, B.W., Iwano, E.J., Burnett, W.S., Howe, H.L., Clark, L.C.: Monitoring for clusters of disease: application to leukemia incidence in Upstate New York. American Journal of Epidemiology 132, 136–143 (1990)
Openshaw, S., Charlton, M., Wymer, C., Craft, A.: A Mark 1 Geographical analysis machine for the automated analysis of point data sets. International Journal of Geographical Information Systems 1, 335–358 (1987)
Fotheringham, A.S., Zhan, F.B.: A comparison of three exploratory methods for cluster detection in spatial point patterns. Geographical Analysis 28, 200–218 (1996)
Kulldorff, M.: A spatial scan statistic. Communications in Statistics 26, 1481–1496 (1997)
Lawson, A., Biggeri, A., Bhning, D.: Disease mapping and risk assessment for public health. Wiley, New York (1999)
Kulldorff, M., Tango, T., Park, P.J.: Power comparison for disease clustering tests. Computational statistics and Data Analysis 42, 665–684 (2003)
Song, C., Kulldorff, M.: Power evaluation of disease clustering tests. International Journal of Health Geographics 2, 1–8 (2003)
Leloup, J.A., Lachkar, Z., Boulanger, J.-P., Thiria, S.: Detecting decadal changes in ENSO using neural networks. Climate dynamics 28, 147–162 (2007)
Kulldorff, M., Athas, W., Feuer, E., Miller, B., Key, C.: Evaluating clusters alarms: A space-time scan statistic and brain cancer in Los Alamos. American Journal of Public Health 88, 1377–1380 (1998)
Kulldorff, M., Song, C., Gregorio, D., Samciuk, H., DeChello, L.: Cancer maps patterns: are they random or not? American Journal of Preventive medicine 30, 37–49 (2006)
Ceccato, V., Haining, R.: Crime in border regions: The Scandinavian case of resund, 1998-2001. Annals of the Association of American Geographers 94, 807–826 (2004)
Coulston, J.W., Riiters, K.H.: Geographic analysis of forest health indicators using spatial scan statistics. Environmental Management 31, 764–773 (2003)
Tuia, D., Ratle, F., Lasaponara, R., Telesca, L., Kanesvki, M.: Scan Statistics of forest fires clusters. Communications in Nonlinear Sciences and Numerical Simulations 13(8), 1689–1694 (2008)
Kuhnert, C., Helbling, D., West, G.B.: Scaling laws in urban supply networks. Physica A 363, 96–103 (2007)
Klassen, A., Kulldorff, M., Curriero, F.: Geographical clustering of prostate cancer grade and stage at diagnosis, before and after adjustment for risk factors. International Journal of Health Geographics 4 (2005)
Von Luxburg, U.: A tutorial on spectral clustering. Technical report no. TR-149. Max-Planck-Institut fuer biologische Kibernetik, Tuebingen (2006)
Conley, J., Gahegan, M., Macgill, J.: A genetic approach to detecting clusters in point data sets. Geographical Analysis 37, 286–314 (2005)
Duczmal, L., Kulldorff, M., Huang, L.: Evaluation of spatial scan statistics for irregularly shaped clusters. Journal of Computational and Graphical Statistics 15, 1–15 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tuia, D., Kaiser, C., Da Cunha, A., Kanevski, M. (2008). Socio-economic Data Analysis with Scan Statistics and Self-organizing Maps. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-69839-5_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69838-8
Online ISBN: 978-3-540-69839-5
eBook Packages: Computer ScienceComputer Science (R0)