Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Socio-economic Data Analysis with Scan Statistics and Self-organizing Maps

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5072))

Included in the following conference series:

Abstract

Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of the cantons of Vaud and Geneva in Western Switzerland. The unsupervised classification method, based on Ward’s classification and self-organized maps, is used to classify the municipalities of the region and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape of the region. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of activities. The method is applied to the distribution of business managers and working class at the intra-urban scale. Results show the effect of peri-urbanization of the region and can be analyzed in both transportation and social terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schuler, M., Bassand, M.: La Suisse, une métropole mondiale? IREC. Lausanne (1985)

    Google Scholar 

  2. DaCunha, A.: La métropole absente?, IREC, Lausanne (1992)

    Google Scholar 

  3. Bassand, M.: Métropolisation et inégalités sociales. Presses Polytechniques Universitaires Romandes, Lausanne (1997)

    Google Scholar 

  4. Batty, M.: Cities and complexity. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  6. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  7. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  8. Anselin, L.: Local indicators of spatial autocorrelation - LISA. Geographical Analysis 27, 93–115 (1995)

    Google Scholar 

  9. Turnbull, B.W., Iwano, E.J., Burnett, W.S., Howe, H.L., Clark, L.C.: Monitoring for clusters of disease: application to leukemia incidence in Upstate New York. American Journal of Epidemiology 132, 136–143 (1990)

    Google Scholar 

  10. Openshaw, S., Charlton, M., Wymer, C., Craft, A.: A Mark 1 Geographical analysis machine for the automated analysis of point data sets. International Journal of Geographical Information Systems 1, 335–358 (1987)

    Article  Google Scholar 

  11. Fotheringham, A.S., Zhan, F.B.: A comparison of three exploratory methods for cluster detection in spatial point patterns. Geographical Analysis 28, 200–218 (1996)

    Google Scholar 

  12. Kulldorff, M.: A spatial scan statistic. Communications in Statistics 26, 1481–1496 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Lawson, A., Biggeri, A., Bhning, D.: Disease mapping and risk assessment for public health. Wiley, New York (1999)

    MATH  Google Scholar 

  14. Kulldorff, M., Tango, T., Park, P.J.: Power comparison for disease clustering tests. Computational statistics and Data Analysis 42, 665–684 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, C., Kulldorff, M.: Power evaluation of disease clustering tests. International Journal of Health Geographics 2, 1–8 (2003)

    Article  Google Scholar 

  16. Leloup, J.A., Lachkar, Z., Boulanger, J.-P., Thiria, S.: Detecting decadal changes in ENSO using neural networks. Climate dynamics 28, 147–162 (2007)

    Article  Google Scholar 

  17. Kulldorff, M., Athas, W., Feuer, E., Miller, B., Key, C.: Evaluating clusters alarms: A space-time scan statistic and brain cancer in Los Alamos. American Journal of Public Health 88, 1377–1380 (1998)

    Article  Google Scholar 

  18. Kulldorff, M., Song, C., Gregorio, D., Samciuk, H., DeChello, L.: Cancer maps patterns: are they random or not? American Journal of Preventive medicine 30, 37–49 (2006)

    Article  Google Scholar 

  19. Ceccato, V., Haining, R.: Crime in border regions: The Scandinavian case of resund, 1998-2001. Annals of the Association of American Geographers 94, 807–826 (2004)

    Google Scholar 

  20. Coulston, J.W., Riiters, K.H.: Geographic analysis of forest health indicators using spatial scan statistics. Environmental Management 31, 764–773 (2003)

    Article  Google Scholar 

  21. Tuia, D., Ratle, F., Lasaponara, R., Telesca, L., Kanesvki, M.: Scan Statistics of forest fires clusters. Communications in Nonlinear Sciences and Numerical Simulations 13(8), 1689–1694 (2008)

    Article  Google Scholar 

  22. Kuhnert, C., Helbling, D., West, G.B.: Scaling laws in urban supply networks. Physica A 363, 96–103 (2007)

    Article  Google Scholar 

  23. Klassen, A., Kulldorff, M., Curriero, F.: Geographical clustering of prostate cancer grade and stage at diagnosis, before and after adjustment for risk factors. International Journal of Health Geographics 4 (2005)

    Google Scholar 

  24. Von Luxburg, U.: A tutorial on spectral clustering. Technical report no. TR-149. Max-Planck-Institut fuer biologische Kibernetik, Tuebingen (2006)

    Google Scholar 

  25. Conley, J., Gahegan, M., Macgill, J.: A genetic approach to detecting clusters in point data sets. Geographical Analysis 37, 286–314 (2005)

    Article  Google Scholar 

  26. Duczmal, L., Kulldorff, M., Huang, L.: Evaluation of spatial scan statistics for irregularly shaped clusters. Journal of Computational and Graphical Statistics 15, 1–15 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tuia, D., Kaiser, C., Da Cunha, A., Kanevski, M. (2008). Socio-economic Data Analysis with Scan Statistics and Self-organizing Maps. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69839-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69838-8

  • Online ISBN: 978-3-540-69839-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics