Abstract
The nonlinear dynamical system which models the axon impulse activity is studied through the analysis of the wavelet coefficients. A system with a high pulse source is analyzed in dependence of the amplitude. It is shown that there exists a critical value of the amplitude, and a catastrophe above it. This value is easily detected by the large values of the wavelet coefficients.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. Journal 1, 445–466 (1961)
Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1962)
Cattani, C.: Haar Wavelet based Technique for Sharp Jumps Classification. Mathematical Computer Modelling 39, 255–279 (2004)
Cattani, C.: Haar wavelets based technique in evolution problems. Proc. Estonian Acad. of Sciences Phys. Math. 53(1), 45–63 (2004)
Cattani, C.: Wavelet approach to Stability of Orbits Analysis. International Journal of Applied Mechanics 42(6), 136–142 (2006)
Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Series on Advances in Mathematics for Applied Sciences, vol. 74. World Scientific, Singapore (2007)
Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)
Toma, C.: An Extension of the Notion of Observability at Filtering and Sampling Devices. In: Proceedings of the International Symposium on Signals, Circuits and Systems Iasi SCS 2001, Romania, pp. 233–236 (2001)
Toma, G.: Practical Test Functions Generated by Computer Algorithms. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 576–585. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cattani, C., Scalia, M. (2008). Wavelet Analysis of Pulses in the Fitzhugh Model. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_91
Download citation
DOI: https://doi.org/10.1007/978-3-540-69839-5_91
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69838-8
Online ISBN: 978-3-540-69839-5
eBook Packages: Computer ScienceComputer Science (R0)