Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Wavelet Analysis of Pulses in the Fitzhugh Model

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5072))

Included in the following conference series:

Abstract

The nonlinear dynamical system which models the axon impulse activity is studied through the analysis of the wavelet coefficients. A system with a high pulse source is analyzed in dependence of the amplitude. It is shown that there exists a critical value of the amplitude, and a catastrophe above it. This value is easily detected by the large values of the wavelet coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. Journal 1, 445–466 (1961)

    Article  Google Scholar 

  2. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1962)

    Google Scholar 

  3. Cattani, C.: Haar Wavelet based Technique for Sharp Jumps Classification. Mathematical Computer Modelling 39, 255–279 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cattani, C.: Haar wavelets based technique in evolution problems. Proc. Estonian Acad. of Sciences Phys. Math. 53(1), 45–63 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Cattani, C.: Wavelet approach to Stability of Orbits Analysis. International Journal of Applied Mechanics 42(6), 136–142 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Series on Advances in Mathematics for Applied Sciences, vol. 74. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  7. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Toma, C.: An Extension of the Notion of Observability at Filtering and Sampling Devices. In: Proceedings of the International Symposium on Signals, Circuits and Systems Iasi SCS 2001, Romania, pp. 233–236 (2001)

    Google Scholar 

  9. Toma, G.: Practical Test Functions Generated by Computer Algorithms. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 576–585. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cattani, C., Scalia, M. (2008). Wavelet Analysis of Pulses in the Fitzhugh Model. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69839-5_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69838-8

  • Online ISBN: 978-3-540-69839-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics