Abstract
In this paper we deal with two issues. First, we discuss the negative effects of term correlation in query expansion algorithms, and we propose a novel and simple method (query clauses) to represent expanded queries which may alleviate some of these negative effects. Second, we discuss a method to optimise local query expansion methods using genetic algorithms, and we apply this method to improve stemming. We evaluate this method with the novel query representation method and show very significant improvements for the problem of optimising stemming.
Supported by projects TIN2007-67581-C02-01 and TIN2007-68083-C02-01.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araujo, L., Pérez-Agüera, J.R.: Improving Query Expansion with Stemming Terms: A New Genetic Algorithm Approach. In: Eighth European Conference on Evolutionary Computation in Combinatorial Optimisation (2008)
Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addison-Wesley (1999)
Callan, J.P., Croft, W.B., Harding, S.M.: The INQUERY Retrieval System. In: DEXA, pp. 78–83 (1992)
Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An Information-theoretic Approach to Automatic Query Expansion. ACM Trans. Inf. Syst. 19(1), 1–27 (2001)
Chang, Y., Ounis, I., Kim, M.: Query Reformulation Using Automatically Generated Query Concepts from a Document Space. Inf. Process. Manage. 42(2), 453–468 (2006)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)
Holland, J.J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)
Lopez-Pujalte, C., Bote, V.P.G., de Moya Anegón, F.: A Test of Genetic Algorithms in Relevance Feedback. Inf. Process. Manage. 38(6), 793–805 (2002)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution programs. 2nd edn. Springer, Heidelberg (1994)
Peters, C., Braschler, M.: European Research Letter: Cross-Language System Evaluation: The CLEF Campaigns. JASIST 52(12), 1067–1072 (2001)
Pôssas, B., Ziviani, N., Wagner Meira, J., Ribeiro-Neto, B.: Set-based Vector Model: An Efficient Approach for Correlation-based Ranking. ACM Trans. Inf. Syst. 23(4), 397–429 (2005)
Robertson, S.E., Walker, S.: Some Simple Effective Approximations to the 2-Poisson Model for Probabilistic Weighted Retrieval. In: ACM SIGIR 1994: Proceedings of the 17th annual international ACM SIGIR, pp. 232–241. Springer, New York (1994)
Silva, I.R., Souza, J.N., Santos, K.S.: Dependence Among Terms in Vector Space Model. In: IDEAS 2004: Proceedings of the International Database Engineering and Applications Symposium (IDEAS 2004), Washington, DC, USA, pp. 97–102. IEEE Computer Society, Los Alamitos (2004)
Wong, S.K.M., Ziarko, W., Raghavan, V.V., Wong, P.C.N.: On Modeling of Information Retrieval Concepts in Vector Space. ACM Trans. Database Syst. 12(2), 299–321 (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez-Agüera, J.R., Zaragoza, H., Araujo, L. (2008). Exploiting Morphological Query Structure Using Genetic Optimisation. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds) Natural Language and Information Systems. NLDB 2008. Lecture Notes in Computer Science, vol 5039. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69858-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-69858-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69857-9
Online ISBN: 978-3-540-69858-6
eBook Packages: Computer ScienceComputer Science (R0)