Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Guarding Art Galleries: The Extra Cost for Sculptures Is Linear

  • Conference paper
Algorithm Theory – SWAT 2008 (SWAT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5124))

Included in the following conference series:

Abstract

Art gallery problems have been extensively studied over the last decade and have found different type of applications. Normally the number of sides of a polygon or the general shape of the polygon is used as a measure of the complexity of the problem. In this paper we explore another measure of complexity, namely, the number of guards required to guard the boundary, or the walls, of the gallery. We prove that if n guards are necessary to guard the walls of an art gallery, then an additional team of at most 4n − 6 will guard the whole gallery. This result improves a previously known quadratic bound, and is a step towards a possibly optimal value of n − 2 additional guards. The proof is algorithmic, uses ideas from graph theory, and is mainly based on the definition of a new reduction operator which recursively eliminates the simple parts of the polygon. We also prove that every gallery with c convex vertices can be guarded by at most 2c − 4 guards, which is optimal.

This work was supported by the European project ist fet Aeolus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloupis, G., Bose, P., Dujmović, V., Gray, C., Langerman, S., Speckmann, B.: Guarding Fat Polygons and Triangulating Guarded Polygons, September (preprint, 2007)

    Google Scholar 

  2. Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into star-shaped polygons. Pattern Recognition 13(6), 395–398 (1981)

    Article  MathSciNet  Google Scholar 

  3. Chvatal, V.: A combinatorial theorem in plane geometry. J. Combin. Theory Ser. B 18, 39–41 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deshpande, A., Taejung, K., Demaine, E.D., Sarma, S.E.: A Pseudopolynomial Time O(log copt)-Approximation Algorithm for Art Gallery Problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Efrat, A., Guibas, L.J., Har-Peled, S., Lin, D.C., Mitchell, J.S.B., Murali, T.M.: Sweeping simple polygons with a chain of guards. In: Proc. 11th annual ACM-SIAM symposium on Discrete algorithms, pp. 927–936 (2000)

    Google Scholar 

  6. Edelsbrunner, H., O’Rourke, J., Welzl, E.: Stationing guards in rectilinear art galleries. Computer vision, graphics, and image processing 27(2), 167–176 (1984)

    Article  Google Scholar 

  7. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability Results for Guarding Polygons and Terrains. Algorithmica 31(1), 79–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fisk, S.: A short proof of Chvatals watchman theorem. J. Combin. Theory Ser. B 24(3), 374 (1978)

    Article  MathSciNet  Google Scholar 

  9. Fragoudakis, C., Markou, E., Zachos, S.: Maximizing the guarded boundary of an Art Gallery is APX-complete. Comput. Geom. 38(3), 170–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh, S.: Approximation algorithms for art gallery problems. In: Proc. Canadian Inform. Process. Soc. Congress, pp. 429–434 (1987)

    Google Scholar 

  11. Honsberger, R.: Mathematical Gems II. Dolciani Mathematical Expositions No. 2. Mathematical Association of America, Washington, pp. 104–110 (1976)

    Google Scholar 

  12. Kahn, J., Klawe, M., Kleitman, D.: Traditional Galleries Require Fewer Watchmen. SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kranakis, E., Pocchiola, M.: Camera placement in integer lattices. Discrete and Comput. Geom. 12(1), 91–104 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laurentini, A.: Guarding the walls of an art gallery. The Visual Computer 15(6), 265–278 (1999)

    Article  Google Scholar 

  15. Liaw, B.C., Huang, N.F., Lee, R.C.T.: The minimum cooperative guards problem on k-spiral polygons. In: Proc. of 5th Canadian Conference on Computational Geometry, pp. 97–101 (1993)

    Google Scholar 

  16. Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans. Inform. Theory 32(2), 276–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Michael, T., Pinciu, V.: Art gallery theorems for guarded guards. Comput. Geom. 26(3), 247–258 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  19. Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations: A survey, Arxiv preprint math/0612672v1 (December 2006)

    Google Scholar 

  20. Sack, J.R.: An O(nlogn) algorithm for decomposing simple rectilinear polygons into convex quadrilaterals. In: Proc. 20th Conference on Communications, Control, and Computing, pp. 64–74 (1982)

    Google Scholar 

  21. Shermer, T.C.: Recent results in art galleries [geometry]. Proc. IEEE 80(9), 1384–1399 (1992)

    Article  Google Scholar 

  22. Speckmann, B., Tóth, C.D.: Allocating Vertex p-Guards in Simple Polygons via Pseudo-Triangulations. Discrete Comput. Geom. 33(2), 345–364 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szabo, L.: Recent results on illumination problems. Bolyai Soc. Math. Stud. 6, 207–221 (1997)

    Google Scholar 

  24. Tóth, L.F.: Illumination of convex discs. Acta Math. Hungar. 29(3-4), 355–360 (1977)

    Article  MATH  Google Scholar 

  25. Urrutia, J.: Art gallery and illumination problems. Handbook of Computational Geometry, 973–1027 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim Gudmundsson

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Addario-Berry, L., Amini, O., Sereni, JS., Thomassé, S. (2008). Guarding Art Galleries: The Extra Cost for Sculptures Is Linear. In: Gudmundsson, J. (eds) Algorithm Theory – SWAT 2008. SWAT 2008. Lecture Notes in Computer Science, vol 5124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69903-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69903-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69900-2

  • Online ISBN: 978-3-540-69903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics