Abstract
In the context of texture classification, this article explores the capacity and the performance of some combinations of feature extraction, linear and nonlinear dimensionality reduction techniques and several kinds of classification methods. The performances are evaluated and compared in term of classification error. In order to test our texture classification protocol, the experiment carried out images from two different sources, the well known Brodatz database and our leaf texture images database.
Chapter PDF
Similar content being viewed by others
References
Arivazhagan, S., Ganesan, L., Priyal, S.P.: Texture classification using Gabor wavelets based rotation invariant features. Pattern Recognition Letters 27, 1976–1982 (2006)
Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory 14, 55–63 (1968)
Aldo Lee, J., Archambeau, C., Verleysen, M.: Locally Linear Embedding versus Isotop. In: ESANN 2003 proceedings, Bruges (Belgium), pp. 527–534 (2003)
Aldo Lee, J., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57, 49–76 (2004)
Journaux, L., Foucherot, I., Gouton, P.: Reduction of the number of spectral bands in Landsat images: a comparison of linear and nonlinear methods. Optical Engineering 45, 67002 (2006)
Niskanen, M., Silven, O.: Comparison of dimensionality reduction methods for wood surface inspection. In: QCAV 2003 proceedings, Gatlinburg, Tennessee, USA, pp. 178–188 (2003)
Gauthier, J.-P., Bornard, G., Silbermann, M.: Harmonic analysis on motion groups and their homogeneous spaces. IEEE Transactions on Systems, Man and Cybernetics 21, 159–172 (1991)
Lemaître, C., Smach, F., Miteran, J., Gauthier, J.-P., Atri, M.: A comparative study of motion descriptors and Zernike moments in color object recognition. In: proceeding of International Multi-Conference on Systems, Signal and Devices. IEEE, Hammamet, Tunisia (2007)
Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)
Valkealahti, K., Oja, E.: Reduced multidimensional cooccurrence histograms in texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 90–94 (1998)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. (2001)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Vapnik, V.: Statistical learning theory. John Wiley & sons, inc., Chichester (1998)
Schapire, R.E.: The strenght of weak learnability. Machine Learning 5, 197–227 (1990)
Miteran, J., Gorria, P., Robert, M.: Geometric classification by stress polytopes. Performances and integrations. Traitement du signal 11, 393–407 (1994)
Abe, S.: Support Vector Machines for Pattern Classification. Springer, Heidelberg (2005)
Rumelhart, D.E., McClelland, J.L., Group, a.t.P.R.: Parallel Distributed Processing, vol. 1. MIT Press, Cambridge (1986)
Aldo Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, Heidelberg (2007)
Camastra, F., Vinciarelli, A.: Estimating the Intrinsic Dimension of Data with a Fractal-Based Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 1404–1407 (2002)
Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second order statistics. IEEE Transactions on signal processing 45, 434–444 (1997)
Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on computers C23, 881–890 (1974)
HyvÄarinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)
Sammon, J.W.: A nonlinear mapping for data analysis. IEEE Transactions on Computers C-18, 401–409 (1969)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)
Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)
Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality reduction of manifolds. In: 21th ICML 2004, Banff, Canada, pp. 369–376 (2004)
Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)
Choi, H., Choi, S.: Robust kernel Isomap. Pattern Recognition 40, 853–862 (2007)
Schölkopf, B., Burges, J.C.C., Smola, A.J.: Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)
Demartines, P., Hérault, J.: Curvilinear Component Analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on neural networks 8, 148–154 (1997)
Kittler, J.: Feature set search algorithms. In: Noordhoff, S. (ed.) Pattern Recognition and Signal Processing. Chen, H., pp. 41–60 (1978)
Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, Chichester (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Journaux, L., Destain, MF., Miteran, J., Piron, A., Cointault, F. (2008). Texture Classification with Generalized Fourier Descriptors in Dimensionality Reduction Context: An Overview Exploration. In: Prevost, L., Marinai, S., Schwenker, F. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2008. Lecture Notes in Computer Science(), vol 5064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69939-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-69939-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69938-5
Online ISBN: 978-3-540-69939-2
eBook Packages: Computer ScienceComputer Science (R0)