Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Modular Arithmetic in Adapted Modular Number System Using Lagrange Representation

  • Conference paper
Information Security and Privacy (ACISP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5107))

Included in the following conference series:

Abstract

In 2004, Bajard, Imbert and Plantard introduced a new system of representation to perform arithmetic modulo a prime integer p, the Adapted Modular Number System (AMNS). In this system, the elements are seen as polynomial of degree nā€‰āˆ’ā€‰1 with the coefficients of size p 1/n. The best method for multiplication in AMNS works only for some specific moduli p. In this paper, we propose a novel algorithm to perform the modular multiplication in the AMNS. This method works for any AMNS, and does not use a special form of the modulo p. We also present a version of this algorithm in Lagrange Representation which performs the polynomial multiplication part of the first algorithm efficiently using Fast Fourier Transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. FIPS PUB 197: Advanced Encryption Standard (AES). FIPS PUB. NIST (2001)

    Google ScholarĀ 

  2. The GNU Multiple Precision arithmetic librairy (May 2006)

    Google ScholarĀ 

  3. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery modular multiplication algorithm. IEEE Transactions on ComputersĀ 47, 766ā€“776 (1998)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Bajard, J.-C., Imbert, L., NĆØgre, C.: Arithmetic operations in finite fields of medium prime characteristic using the lagrange representation. IEEE Trans. ComputersĀ 55(9), 1167ā€“1177 (2006)

    ArticleĀ  Google ScholarĀ 

  5. Bajard, J.-C., Imbert, L., Negre, C., Plantard, T.: Efficient multiplication in gf(p k) for elliptic curve cryptography. In: ARITHā€™16: IEEE Symposium on Computer Arithmetic, June 2003, pp. 181ā€“187 (2003)

    Google ScholarĀ 

  6. Bajard, J.-C., Imbert, L., Plantard, T.: Modular Number Systems: Beyond the Mersenne Family. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol.Ā 3357, pp. 159ā€“169. Springer, Heidelberg (2004)

    Google ScholarĀ 

  7. Bajard, J.-C., Imbert, L., Plantard, T.: Arithmetic operations in the polynomial modular number system. In: ARITHā€™17: IEEE Symposium on Computer Arithmetic (June 2005)

    Google ScholarĀ 

  8. Banihashemi, A.H., Khandani, A.K.: On the complexity of decoding lattices using the Korkin-Zolotarev reduced basis. IEEE Transactions on Information TheoryĀ 44(1), 162ā€“171 (1998)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  9. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol.Ā 263, pp. 311ā€“323. Springer, Heidelberg (1987)

    Google ScholarĀ 

  10. Brassard, G., Monet, S., Zuffellato, D.: Algorithms for very large integer arithmetic. Tech. Sci. Inf.Ā 5(2), 89ā€“102 (1986)

    MATHĀ  Google ScholarĀ 

  11. Cohen, H.: A course in computational algebraic number theory. In: Grad. Texts Math, vol.Ā 138, Springer, Heidelberg (1993)

    Google ScholarĀ 

  12. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Inf. TheoryĀ IT-22(6), 644ā€“654 (1976)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. Kannan, R.: Minkowskiā€™s convex body theorem and integer programming. Math. Oper. Res.Ā 12(3), 415ā€“440 (1987)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  14. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of ComputationĀ 48(177), 203ā€“209 (1987)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  15. Lenstra, A.K., Lenstra, H.W., LovĆ”sz, L.: Factoring polynomials with rational coefficients. In: Mathematische Annalen, vol.Ā 261, pp. 513ā€“534. Springer, Heidelberg (1982)

    Google ScholarĀ 

  16. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol.Ā 218, pp. 417ā€“426. Springer, Heidelberg (1986)

    Google ScholarĀ 

  17. Minkowski, H.: Geometrie der Zahlen. In: Teubner, B.G. (ed.) Leipzig (1896)

    Google ScholarĀ 

  18. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of ComputationĀ 44(170), 519ā€“521 (1985)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  19. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Com. of the ACMĀ 21(2), 120ā€“126 (1978)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  20. Schnorr, C.-P.: Block Korkin-Zolotarev bases and successive minima (1996)

    Google ScholarĀ 

  21. Schnorr, C.-P.: Fast LLL-type lattice reduction. Information and ComputationĀ 204(1), 1ā€“25 (2006)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  22. Schonhage, A., Strassen, V.: Schnelle multiplikation grosser zahlen. ComputingĀ 7, 281ā€“292 (1971)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  23. Solinas, J.: Generalized Mersenne numbers. Research Report CORR-99-39, Center for Applied Cryptographic Research, University of Waterloo, Canada (1999)

    Google ScholarĀ 

  24. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003)

    MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yi Mu Willy Susilo Jennifer Seberry

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Negre, C., Plantard, T. (2008). Efficient Modular Arithmetic in Adapted Modular Number System Using Lagrange Representation. In: Mu, Y., Susilo, W., Seberry, J. (eds) Information Security and Privacy. ACISP 2008. Lecture Notes in Computer Science, vol 5107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70500-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70500-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69971-2

  • Online ISBN: 978-3-540-70500-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics