Abstract
In 2004, Bajard, Imbert and Plantard introduced a new system of representation to perform arithmetic modulo a prime integer p, the Adapted Modular Number System (AMNS). In this system, the elements are seen as polynomial of degree nāāā1 with the coefficients of size p 1/n. The best method for multiplication in AMNS works only for some specific moduli p. In this paper, we propose a novel algorithm to perform the modular multiplication in the AMNS. This method works for any AMNS, and does not use a special form of the modulo p. We also present a version of this algorithm in Lagrange Representation which performs the polynomial multiplication part of the first algorithm efficiently using Fast Fourier Transform.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
FIPS PUB 197: Advanced Encryption Standard (AES). FIPS PUB. NIST (2001)
The GNU Multiple Precision arithmetic librairy (May 2006)
Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery modular multiplication algorithm. IEEE Transactions on ComputersĀ 47, 766ā776 (1998)
Bajard, J.-C., Imbert, L., NĆØgre, C.: Arithmetic operations in finite fields of medium prime characteristic using the lagrange representation. IEEE Trans. ComputersĀ 55(9), 1167ā1177 (2006)
Bajard, J.-C., Imbert, L., Negre, C., Plantard, T.: Efficient multiplication in gf(p k) for elliptic curve cryptography. In: ARITHā16: IEEE Symposium on Computer Arithmetic, June 2003, pp. 181ā187 (2003)
Bajard, J.-C., Imbert, L., Plantard, T.: Modular Number Systems: Beyond the Mersenne Family. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol.Ā 3357, pp. 159ā169. Springer, Heidelberg (2004)
Bajard, J.-C., Imbert, L., Plantard, T.: Arithmetic operations in the polynomial modular number system. In: ARITHā17: IEEE Symposium on Computer Arithmetic (June 2005)
Banihashemi, A.H., Khandani, A.K.: On the complexity of decoding lattices using the Korkin-Zolotarev reduced basis. IEEE Transactions on Information TheoryĀ 44(1), 162ā171 (1998)
Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol.Ā 263, pp. 311ā323. Springer, Heidelberg (1987)
Brassard, G., Monet, S., Zuffellato, D.: Algorithms for very large integer arithmetic. Tech. Sci. Inf.Ā 5(2), 89ā102 (1986)
Cohen, H.: A course in computational algebraic number theory. In: Grad. Texts Math, vol.Ā 138, Springer, Heidelberg (1993)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Inf. TheoryĀ IT-22(6), 644ā654 (1976)
Kannan, R.: Minkowskiās convex body theorem and integer programming. Math. Oper. Res.Ā 12(3), 415ā440 (1987)
Koblitz, N.: Elliptic curve cryptosystems. Mathematics of ComputationĀ 48(177), 203ā209 (1987)
Lenstra, A.K., Lenstra, H.W., LovĆ”sz, L.: Factoring polynomials with rational coefficients. In: Mathematische Annalen, vol.Ā 261, pp. 513ā534. Springer, Heidelberg (1982)
Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol.Ā 218, pp. 417ā426. Springer, Heidelberg (1986)
Minkowski, H.: Geometrie der Zahlen. In: Teubner, B.G. (ed.) Leipzig (1896)
Montgomery, P.L.: Modular multiplication without trial division. Mathematics of ComputationĀ 44(170), 519ā521 (1985)
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Com. of the ACMĀ 21(2), 120ā126 (1978)
Schnorr, C.-P.: Block Korkin-Zolotarev bases and successive minima (1996)
Schnorr, C.-P.: Fast LLL-type lattice reduction. Information and ComputationĀ 204(1), 1ā25 (2006)
Schonhage, A., Strassen, V.: Schnelle multiplikation grosser zahlen. ComputingĀ 7, 281ā292 (1971)
Solinas, J.: Generalized Mersenne numbers. Research Report CORR-99-39, Center for Applied Cryptographic Research, University of Waterloo, Canada (1999)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
Ā© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Negre, C., Plantard, T. (2008). Efficient Modular Arithmetic in Adapted Modular Number System Using Lagrange Representation. In: Mu, Y., Susilo, W., Seberry, J. (eds) Information Security and Privacy. ACISP 2008. Lecture Notes in Computer Science, vol 5107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70500-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-70500-0_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69971-2
Online ISBN: 978-3-540-70500-0
eBook Packages: Computer ScienceComputer Science (R0)