Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Breast Density Segmentation: A Comparison of Clustering and Region Based Techniques

  • Conference paper
Digital Mammography (IWDM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5116))

Included in the following conference series:

Abstract

This paper presents a comparison of two clustering based algorithms and one region based algorithm for segmenting fatty and dense tissue in mammographic images. This is a crucial step in order to obtain a quantitative measure of the density of the breast. The first algorithm is a multiple thresholding algorithm based on the excess entropy, the second one is based on the Fuzzy C-Means clustering algorithm, and the third one is based on a statistical analysis of the breast. The performance of the algorithms is exhaustively evaluated using a database of full-field digital mammograms containing 150 CC and 150 MLO images and ROC analysis (ground-truth provided by an expert). Results demonstrate that the use of region information is useful to obtain homogeneous region segmentation, although clustering algorithms obtained better sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ho, W.T., Lam, P.W.T.: Clinical performance of computer-assisted detection (CAD) system in detecting carcinoma in breasts of different densities. Clinical Radiology 58, 133–136 (2003)

    Article  Google Scholar 

  2. Obenauer, S., Sohns, C., Werner, C., Grabbe, E.: Impact of breast density on computer-aided detection in full-field digital mammography. J. Digit. Imaging 19(3), 258–263 (2006)

    Article  Google Scholar 

  3. Brem, R.F., Hoffmeister, J.W., Rapelyea, J.A., Zisman, G., Mohtashemi, K., Jindal, G., DiSimio, M.P., Rogers, S.K.: Impact of breast density on computer-aided detection for breast cancer. Am. J. Roentgenol. 184(2), 439–444 (2005)

    Google Scholar 

  4. Boyd, N.F., Byng, J.W., Jong, R.A., Fishell, E.K., Little, L.E., Miller, A.B., Lockwood, G.A., Tritchler, D.L., Yaffe, M.J.: Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian national breast screening study. J. Natl Cancer Inst. 87, 670–675 (1995)

    Article  Google Scholar 

  5. Sivaramakrishna, R., Obuchowski, N.A., Chilcote, W.A., Powell, K.A.: Automatic segmentation of mammographic density. Acad. Radiol. 8(3), 250–256 (2001)

    Article  Google Scholar 

  6. Aylward, S.R., Hemminger, B.H., Pisano, E.D.: Mixture modelling for digital mammogram display and analysis. Int. Work. Dig. Mammography, 305–312 (1998)

    Google Scholar 

  7. Ferrari, R.J., Rangayyan, R.M., Borges, R.A., Frere, A.F.: Segmentation of the fibro-glandular disc in mammograms via Gaussian mixture modelling. Med. Biol. Eng. Comput. 42, 378–387 (2004)

    Article  Google Scholar 

  8. Saha, P.K., Udupa, J.K., Conant, E.F., Chakraborty, P., Sullivan, D.: Breast tissue density quantification via digitized mammograms. IEEE Trans. Med. Imag. 20(8), 792–803 (2001)

    Article  Google Scholar 

  9. Zwiggelaar, R., Denton, E.R.E.: Optimal segmentation of mammographic images. In: Int. Work. Dig. Mammography, pp. 751–757 (2004)

    Google Scholar 

  10. Petroudi, S., Brady, M.: Breast density segmentation using texture. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 609–615. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Feldman, D.P., Crutchfield, J.P.: Structural information in two-dimensional patterns: Entropy convergence and excess entropy (2002)

    Google Scholar 

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications (1991)

    Google Scholar 

  13. Bardera, A., Feixas, M., Boada, I., Sbert, M.: High-dimensional normalized mutual information for image registration using random lines. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 264–271. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Bezdek, J.C.: Pattern Recognition With Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  15. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  16. American College of Radiology: Illustrated Breast Imaging Reporting and Data System BIRADS. 3rd edn. American College of Radiology (1998)

    Google Scholar 

  17. Oliver, A., Freixenet, J., Martí, R., Pont, J., Pérez, E., Denton, E., Zwiggelaar, R.: A novel breast tissue density classification methodology. IEEE Trans. Inform. Technol. Biomed. 12(1), 55–65 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elizabeth A. Krupinski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torrent, A. et al. (2008). Breast Density Segmentation: A Comparison of Clustering and Region Based Techniques. In: Krupinski, E.A. (eds) Digital Mammography. IWDM 2008. Lecture Notes in Computer Science, vol 5116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70538-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70538-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70537-6

  • Online ISBN: 978-3-540-70538-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics