Abstract
This paper presents a comparison of two clustering based algorithms and one region based algorithm for segmenting fatty and dense tissue in mammographic images. This is a crucial step in order to obtain a quantitative measure of the density of the breast. The first algorithm is a multiple thresholding algorithm based on the excess entropy, the second one is based on the Fuzzy C-Means clustering algorithm, and the third one is based on a statistical analysis of the breast. The performance of the algorithms is exhaustively evaluated using a database of full-field digital mammograms containing 150 CC and 150 MLO images and ROC analysis (ground-truth provided by an expert). Results demonstrate that the use of region information is useful to obtain homogeneous region segmentation, although clustering algorithms obtained better sensitivity.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ho, W.T., Lam, P.W.T.: Clinical performance of computer-assisted detection (CAD) system in detecting carcinoma in breasts of different densities. Clinical Radiology 58, 133–136 (2003)
Obenauer, S., Sohns, C., Werner, C., Grabbe, E.: Impact of breast density on computer-aided detection in full-field digital mammography. J. Digit. Imaging 19(3), 258–263 (2006)
Brem, R.F., Hoffmeister, J.W., Rapelyea, J.A., Zisman, G., Mohtashemi, K., Jindal, G., DiSimio, M.P., Rogers, S.K.: Impact of breast density on computer-aided detection for breast cancer. Am. J. Roentgenol. 184(2), 439–444 (2005)
Boyd, N.F., Byng, J.W., Jong, R.A., Fishell, E.K., Little, L.E., Miller, A.B., Lockwood, G.A., Tritchler, D.L., Yaffe, M.J.: Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian national breast screening study. J. Natl Cancer Inst. 87, 670–675 (1995)
Sivaramakrishna, R., Obuchowski, N.A., Chilcote, W.A., Powell, K.A.: Automatic segmentation of mammographic density. Acad. Radiol. 8(3), 250–256 (2001)
Aylward, S.R., Hemminger, B.H., Pisano, E.D.: Mixture modelling for digital mammogram display and analysis. Int. Work. Dig. Mammography, 305–312 (1998)
Ferrari, R.J., Rangayyan, R.M., Borges, R.A., Frere, A.F.: Segmentation of the fibro-glandular disc in mammograms via Gaussian mixture modelling. Med. Biol. Eng. Comput. 42, 378–387 (2004)
Saha, P.K., Udupa, J.K., Conant, E.F., Chakraborty, P., Sullivan, D.: Breast tissue density quantification via digitized mammograms. IEEE Trans. Med. Imag. 20(8), 792–803 (2001)
Zwiggelaar, R., Denton, E.R.E.: Optimal segmentation of mammographic images. In: Int. Work. Dig. Mammography, pp. 751–757 (2004)
Petroudi, S., Brady, M.: Breast density segmentation using texture. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 609–615. Springer, Heidelberg (2006)
Feldman, D.P., Crutchfield, J.P.: Structural information in two-dimensional patterns: Entropy convergence and excess entropy (2002)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications (1991)
Bardera, A., Feixas, M., Boada, I., Sbert, M.: High-dimensional normalized mutual information for image registration using random lines. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 264–271. Springer, Heidelberg (2006)
Bezdek, J.C.: Pattern Recognition With Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19(7), 711–720 (1997)
American College of Radiology: Illustrated Breast Imaging Reporting and Data System BIRADS. 3rd edn. American College of Radiology (1998)
Oliver, A., Freixenet, J., Martí, R., Pont, J., Pérez, E., Denton, E., Zwiggelaar, R.: A novel breast tissue density classification methodology. IEEE Trans. Inform. Technol. Biomed. 12(1), 55–65 (2008)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Torrent, A. et al. (2008). Breast Density Segmentation: A Comparison of Clustering and Region Based Techniques. In: Krupinski, E.A. (eds) Digital Mammography. IWDM 2008. Lecture Notes in Computer Science, vol 5116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70538-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-70538-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70537-6
Online ISBN: 978-3-540-70538-3
eBook Packages: Computer ScienceComputer Science (R0)