Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Evaluation of Effects on Breast Cancer Diagnoses When Using Mammographic Semantic Information

  • Conference paper
Digital Mammography (IWDM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5116))

Included in the following conference series:

  • 1341 Accesses

Abstract

In this paper, we describe the evaluation of the effects of mammographic semantic information in breast cancer diagnoses. A brief description of relations between semantic information and image features are given. We demonstrate the experiments based on mammographic semantic information and the MIAS database. Mammograms were annotated by expert radiologists with semantic information and assigned NHSBSP five-point score. Two classifiers were applied to automatically classify the mammogram into NHSBSP five-point score using the semantic information and radiologists also classified the mammograms by their own annotated semantic information. The analysis of the experimental results provides further understanding when using mammographic semantic information in breast cancer diagnosis. It also indicated a common knowledge base and links between computers and human experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Koning, H.J.: Mammographic screening: evidence from randomised controlled trials. Annals of Oncology 14(8), 1185–1189 (2003)

    Article  Google Scholar 

  2. Nishikawa, R.M.: Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics 31(4-5), 224–235 (2007)

    Article  Google Scholar 

  3. Cheng, H., Cai, X., Chen, X., Hu, L., Lou, X.: Computer-aided detection and classification of microcalcification in mammograms: a survey. Pattern Recognition 36, 2967–2991 (2003)

    Article  MATH  Google Scholar 

  4. Burnside, E.S., Rubin, D.L., Fine, J.P., Shachter, R.D., Sisney, G.A., Leung, W.K.: Bayesian Network to Predict Breast Cancer Risk of Mammographic Microcalcifications and Reduce Number of Benign Biopsy Results: Initial Experience. Radiology 240(3), 666–673 (2006)

    Article  Google Scholar 

  5. Varela, C., Timp, S., Karssemeijer, N.: Use of border information in the classification of mammographic masses. Physics in Medicine and Biology 51(2), 425–441

    Google Scholar 

  6. Karahaliou, A., Skiadopoulos, S., Boniatis, I., Sakellaropoulos, P., Likaki, E., Panayiotakis, G., Costaridou, L.: Texture analysis of tissue surrounding microcalcifications on mammograms for breast cancer diagnosis. Br. J. Radiol. 80(956), 648–656 (2007)

    Article  Google Scholar 

  7. Wilson, R., Asbury, D., Cooke, J., Michell, M., Patnick, J. (eds.): Clinical guidelines for breast cancer screening assessment, vol. 49. NHSBSP Publication (April 2001)

    Google Scholar 

  8. Davies, D.H.: Digital mammography - the comparative evaluation of film digitizers. British Journal of Radiology 66, 930–933 (1993)

    Article  Google Scholar 

  9. Manley, E., Qi, D., Denton, E.R., Zwiggelaar, R.: Development of a Computer Aided Mammographic Ontology from Multiple Sources. In: Proceedings of 7th International Workshop on Digital Mammography, June 2004, pp. 225–230 (2004)

    Google Scholar 

  10. Qi, D., Denton, E.R., Zwiggelaar, R.: Linking Image Structures with Medical Ontology Information. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. http://www.cancerscreening.nhs.uk/breastscreen/ (accessed 13/06/ 2007)

  12. Stell., J.: Part and complement: fundamental concepts in spatial relations. Annals of Mathematics and Artificial Intelligence, 1–17 (2004)

    Google Scholar 

  13. Birdwell, R., Morris, E., Wang, S.C., Parkinson, B.: Pocket Radiologist - Breast Top 100 Diagnoses. W.B. Saunders Company, Philadelphia (2003)

    Google Scholar 

  14. Caulkin, S., Astley, S., Asquith, J., Boggis, C.: Sites of occurrence of malignancies in mammograms. In: Proceedings of 4th International Workshop on Digital Mammography, Nijmegen, The Netherlands, pp. 279–282 (1998)

    Google Scholar 

  15. Aha, D., Kibler, D.: Instance-baced learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  16. Kraemer, H.C.: Correlation coefficients in medical research: from product moment correlation to the odds ratio. Statistical Methods in Medical Research 15(6), 525–545 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elizabeth A. Krupinski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qi, D., Denton, E.R.E., Leason, J.M.E., Othman, D., Zwiggelaar, R. (2008). The Evaluation of Effects on Breast Cancer Diagnoses When Using Mammographic Semantic Information. In: Krupinski, E.A. (eds) Digital Mammography. IWDM 2008. Lecture Notes in Computer Science, vol 5116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70538-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70538-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70537-6

  • Online ISBN: 978-3-540-70538-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics