Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Acoustic Framework for Detecting Fatigue in Speech Based Human-Computer-Interaction

  • Conference paper
Computers Helping People with Special Needs (ICCHP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5105))

Included in the following conference series:

  • 3960 Accesses

Abstract

This article describes a general framework for detecting accident-prone fatigue states based on prosody, articulation and speech quality related speech characteristics. The advantages of this real-time measurement approach are that obtaining speech data is non obtrusive, and free from sensor application and calibration efforts. The main part of the feature computation is the combination of frame level based speech features and high level contour descriptors resulting in over 8,500 features per speech sample. In general the measurement process follows the speech adapted steps of pattern recognition: (a) recording speech, (b) preprocessing (segmenting speech units of interest), (c) feature computation (using perceptual and signal processing related features, as e.g. fundamental frequency, intensity, pause patterns, formants, cepstral coefficients), (d) dimensionality reduction (filter and wrapper based feature subset selection, (un-)supervised feature transformation), (e) classification (e.g. SVM, K-NN classifier), and (f) evaluation (e.g. 10-fold cross validation). The validity of this approach is briefly discussed by summarizing the empirical results of a sleep deprivation study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. MacLean, A.W.: Sleepiness and Driving. Sleep Medicine Reviews 7, 507–521 (2003)

    Article  Google Scholar 

  2. Melamed, S.: Excessive Daytime Sleepiness and Risk of Occupational Injuries in Non-Shift Daytime Workers. Sleep 25(3), 315–322 (2002)

    Google Scholar 

  3. Wright, N., McGown, A.: Vigilance on the Civil Flight Deck: Incidence of Sleepiness and Sleep during Long-Haul Flights and Associated Changes in Physiological Parameters. Ergonomics 44, 82–106 (2001)

    Article  Google Scholar 

  4. Durmer, J.S., Dinges, D.F.: Neurocognitive Consequences of Sleep Deprivation. Seminars in Neurology 25, 117–129 (2005)

    Article  Google Scholar 

  5. Nilsson, J.P., Soderstrom, M., Karlsson, A.U., Lekander, M., Akerstedt, T., Lindroth, N.E., Axelsson, J.: Less Effective Executive Functioning after one Night´s Sleep Deprivation. Journal of Sleep Research 14, 1–6 (2005)

    Article  Google Scholar 

  6. Cañas, J.J.: Technology for special needs. An Interdisciplinary. Journal on Humans in ICT Environments 2, 4–7 (2006)

    Google Scholar 

  7. Kollias, S., Amir, N., Kim, J., Grandjean, D.: Description of Potential Exemplars: Signals and Signs of Emotion. HUMAINE Human-Machine Interaction Network on Emotions (2004)

    Google Scholar 

  8. Caffier, P.P.: The Spontaneous Eye-Blink as Sleepiness Indicator in Patients with Obstructive Sleep Apnoea Syndrome-a Pilot Study. Sleep Medicine 2, 155–162 (2002)

    Google Scholar 

  9. Sommer, D., Chen, M., Golz, M., Trunschel, U., Mandic, D.: Fusion of State Space and Frequency Domain Features for Improved Microsleep Detection. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 753–759. Springer, Heidelberg (2005)

    Google Scholar 

  10. Vöhringer-Kuhnt, T., Baumgarten, T., Karrer, K., Briest, S.: Wierwille’s Method of Driver Drowsiness Evaluation Revisited. In: Proceeding of International Conference on Traffic & Transport Psychology (2004)

    Google Scholar 

  11. Schuller, B.: Automatische Emotionserkennung aus sprachlicher und manueller Interaktion. [Automatic Emotion Recognition from verbal and manual Interaction]. Dissertation, Technische Universität München (2006)

    Google Scholar 

  12. Schuller, B., Batliner, A., Seppi, D., Steidl, S., Vogt, T., Wagner, J., Devillers, L., Vidrascu, L., Amir, N., Kessous, L., Aharonson, V.: The Relevance of Feature Type for the Automatic Classification of Emotional User States: Low Level Descriptors and Functionals. In: Proceedings of Interspeech, pp. 2253–2256 (2007)

    Google Scholar 

  13. Vlasenko, B., Schuller, B., Wendemuth, A., Rigoll, G.: Combining Frame and Turn-Level Information for Robust Recognition of Emotions within Speech. In: Proceedings of Interspeech, pp. 2249–2252 (2007)

    Google Scholar 

  14. Batliner, A., Steidl, S., Schuller, B., Seppi, D., Laskowski, K., Vogt, T., Devillers, L., Vidrascu, L., Amir, N., Kessous, L., Aharonson, V.: Combining Efforts for Improving Automatic Classification of Emotional User States. In: Erjavec, T., Gros, J.Z. (eds.) Language Technologies, IS-LTC 2006, Ljubljana, Slovenia, pp. 240–245 (2006)

    Google Scholar 

  15. Mierswa, I., Morik, K.: Automatic Feature Extraction for Classifying Audio Data. Kluwe, Amsterdam (2005)

    Google Scholar 

  16. Batliner, A., Hacker, C., Steidl, S., Noeth, E., D’Arcy, S., Rusell, M., Wong, M.: “You stupid tin box” – Children interacting with the AIBO robot: A crosslinguisitc emotional speech corpus. In: Proceedings of the 4th International Conference of Language Resources and Evaluation LREC 2004 (LREC Lisbon 2004), pp. 171–174 (2004)

    Google Scholar 

  17. Steidl, S., Hacker, C., Ruff, C., Batliner, A., Noeth, E., Haas, J.: Looking at the Last Two Turns, I’d Say This Dialogue is Doomed – Measuring Dialogue Success. In: Proceedings TSD (Text, Speech and Dialog), pp. 629–636 (2004)

    Google Scholar 

  18. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A Database of German Emotional Speech. In: Proceedings of Interspeech 2005, Lisboa, Portugal, pp. 1517–1520 (2005)

    Google Scholar 

  19. Schiel, F.: MAUS Goes Iterative. In: Proc. of the IV. International Conference on Language Resources and Evaluation, Lisbon, Portugal, pp. 1015–1018 (2004)

    Google Scholar 

  20. Rabiner, L., Schafer, R.W.: Digital Processing of Speech Signals. Prentice-Hall, Upper Saddle River (1978)

    Google Scholar 

  21. Scherer, K.R.: Vocal affect expression: A review and a model for future research. Psychological Bulletin 99, 143–165 (1986)

    Article  Google Scholar 

  22. Kienast, M., Sendlmeier, W.F.: Acoustical analysis of spectral and temporal changes in emotional speech. Speech Emotion, 92–97 (2000)

    Google Scholar 

  23. Tartter, V.C.: Happy talk - Perceptual and acoustic effects of smiling on speech. Perception and Psychophysics 27(1), 24–27 (1980)

    Google Scholar 

  24. Nwe, T.L., Li, H., Dong, M.: Analysis and Detection of Speech under Sleep Deprivation. In: Proceeding of Interspeech, pp. 17–21 (2006)

    Google Scholar 

  25. Krajewski, J., Kröger, B.: Using prosodic and spectral characteristics for sleepiness detection. In: Interspeech Proceedings, pp. 1841–1844 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Miesenberger Joachim Klaus Wolfgang Zagler Arthur Karshmer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajewski, J., Wieland, R., Batliner, A. (2008). An Acoustic Framework for Detecting Fatigue in Speech Based Human-Computer-Interaction. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds) Computers Helping People with Special Needs. ICCHP 2008. Lecture Notes in Computer Science, vol 5105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70540-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70540-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70539-0

  • Online ISBN: 978-3-540-70540-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics