Abstract
Moran, Naor and Segev have asked what is the minimal r = r(n, k) for which there exists an (n,k)-monotone encoding of length r, i.e., a monotone injective function from subsets of size up to k of {1, 2, ..., n} to r bits. Monotone encodings are relevant to the study of tamper-proof data structures and arise also in the design of broadcast schemes in certain communication networks.
To answer this question, we develop a relaxation of k-superimposed families, which we call α-fraction k-multi-user tracing ((k, α)-FUT families). We show that r(n, k) = Θ(k log(n/k)) by proving tight asymptotic lower and upper bounds on the size of (k, α)-FUT families and by constructing an (n,k)-monotone encoding of length O(k log(n/k)).
We also present an explicit construction of an (n, 2)-monotone encoding of length 2logn + O(1), which is optimal up to an additive constant.
Due to space limitations we refer the reader to a longer version available at http://www.math.tau.ac.il/~nogaa/PDFS/publications.html
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N.: Explicit construction of exponential sized families of k-independent sets. Discrete Mathematics 58(2), 191–193 (1986)
Alon, N., Asodi, V.: Tracing a single user. European Journal of Combinatorics 27(8), 1227–1234 (2006)
Alon, N., Asodi, V.: Tracing many users with almost no rate penalty. IEEE Transactions on Information Theory 53(1), 437–439 (2007)
Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proceedings of the 34th Annual ACM STOC, pp. 659–668 (2002)
Coppersmith, D., Shearer, J.: New bounds for union-free families of sets. Electronic Journal of Combinatorics 5(1), 39 (1998)
Csűrös, M., Ruszinkó, M.: Single user tracing and disjointly superimposed codes. IEEE Transactions on Information Theory 51(4), 1606–1611 (2005)
Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii 18(3), 158–166 (1982)
Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of r others. Israel Journal of Mathematics 51(1-2), 79–89 (1985)
Füredi, Z.: A note on r-cover-free families. Journal of Combinatorial Theory Series A 73(1), 172–173 (1996)
Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. In: Proceedings of the 22nd IEEE CCC, pp. 96–108 (2007)
Komlós, J., Greenberg, A.: An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Transactions on Information Theory 31(2), 302–306 (1985)
Laczay, B., Ruszinkó, M.: Multiple user tracing codes. In: Proceedings of IEEE ISIT 2006, pp. 1900–1904 (2006)
Masser, D.W.: Note on a conjecture of Szpiro. Astérisque 183, 19–23 (1990)
Moran, T., Naor, M., Segev, G.: Deterministic History-Independent Strategies for Storing Information on Write-Once Memories. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer, Heidelberg (2007)
Oesterlé, J.: Nouvelles approches du “théorème” de Fermat. Astérisque 161/162, 165–186 (1988)
Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. Journal of Combinatorial Theory Series A 66(2), 302–310 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alon, N., Hod, R. (2008). Optimal Monotone Encodings. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-70575-8_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70574-1
Online ISBN: 978-3-540-70575-8
eBook Packages: Computer ScienceComputer Science (R0)