Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Monotone Encodings

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Included in the following conference series:

  • 2148 Accesses

Abstract

Moran, Naor and Segev have asked what is the minimal r = r(n, k) for which there exists an (n,k)-monotone encoding of length r, i.e., a monotone injective function from subsets of size up to k of {1, 2, ..., n} to r bits. Monotone encodings are relevant to the study of tamper-proof data structures and arise also in the design of broadcast schemes in certain communication networks.

To answer this question, we develop a relaxation of k-superimposed families, which we call α-fraction k-multi-user tracing ((k, α)-FUT families). We show that r(n, k) = Θ(k log(n/k)) by proving tight asymptotic lower and upper bounds on the size of (k, α)-FUT families and by constructing an (n,k)-monotone encoding of length O(k log(n/k)).

We also present an explicit construction of an (n, 2)-monotone encoding of length 2logn + O(1), which is optimal up to an additive constant.

Due to space limitations we refer the reader to a longer version available at http://www.math.tau.ac.il/~nogaa/PDFS/publications.html

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N.: Explicit construction of exponential sized families of k-independent sets. Discrete Mathematics 58(2), 191–193 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Asodi, V.: Tracing a single user. European Journal of Combinatorics 27(8), 1227–1234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Asodi, V.: Tracing many users with almost no rate penalty. IEEE Transactions on Information Theory 53(1), 437–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: Proceedings of the 34th Annual ACM STOC, pp. 659–668 (2002)

    Google Scholar 

  5. Coppersmith, D., Shearer, J.: New bounds for union-free families of sets. Electronic Journal of Combinatorics 5(1), 39 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Csűrös, M., Ruszinkó, M.: Single user tracing and disjointly superimposed codes. IEEE Transactions on Information Theory 51(4), 1606–1611 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii 18(3), 158–166 (1982)

    MathSciNet  Google Scholar 

  8. Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of r others. Israel Journal of Mathematics 51(1-2), 79–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Füredi, Z.: A note on r-cover-free families. Journal of Combinatorial Theory Series A 73(1), 172–173 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. In: Proceedings of the 22nd IEEE CCC, pp. 96–108 (2007)

    Google Scholar 

  11. Komlós, J., Greenberg, A.: An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Transactions on Information Theory 31(2), 302–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laczay, B., Ruszinkó, M.: Multiple user tracing codes. In: Proceedings of IEEE ISIT 2006, pp. 1900–1904 (2006)

    Google Scholar 

  13. Masser, D.W.: Note on a conjecture of Szpiro. Astérisque 183, 19–23 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Moran, T., Naor, M., Segev, G.: Deterministic History-Independent Strategies for Storing Information on Write-Once Memories. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Oesterlé, J.: Nouvelles approches du “théorème” de Fermat. Astérisque 161/162, 165–186 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. Journal of Combinatorial Theory Series A 66(2), 302–310 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alon, N., Hod, R. (2008). Optimal Monotone Encodings. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics