Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Asynchronous Multi-Party Computation with Quadratic Communication

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5126))

Included in the following conference series:

Abstract

We present an efficient protocol for secure multi-party computation in the asynchronous model with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter κ, a circuit with c gates can be securely computed with communication complexity \(\O(c n^2 \kappa)\) bits, which improves on the previously known solutions by a factor of Ω(n). The construction of the protocol follows the approach introduced by Franklin and Haber (Crypto’93), based on a public-key encryption scheme with threshold decryption. To achieve the quadratic complexity, we employ several techniques, including circuit randomization due to Beaver (Crypto’91), and an abstraction of certificates, which can be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)

    Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. ACM CCS, pp. 62–73 (1993)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: The exact security of digital signatures — How to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

    Google Scholar 

  4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61 (1993)

    Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th STOC, pp. 1–10 (1988)

    Google Scholar 

  6. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: Proc. 13th PODC, pp. 183–192 (1994)

    Google Scholar 

  7. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinopole: Practical asynchronous Byzantine agreement using cryptography. In: Proc. 19th PODC, pp. 123–132 (2000)

    Google Scholar 

  8. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute of Science, Rehovot 76100, Israel (June 1995)

    Google Scholar 

  9. Canetti, R.: Security and composition of multiparty cryptographic protocols. JoC 13(1), 143–202 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proc. 30th STOC, pp. 209–218 (1998)

    Google Scholar 

  11. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: Proc. 25th STOC, pp. 42–51 (1993)

    Google Scholar 

  12. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proc. 20th STOC, pp. 11–19 (1988)

    Google Scholar 

  13. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 110–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  16. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Proc. Financial Cryptography 2000 (2000)

    Google Scholar 

  17. Franklin, M., Haber, S.: Joint encryption and message-efficient secure computation. JoC 9(4), 217–232 (1996); Preliminary version in Proc. CRYPTO 1993

    Google Scholar 

  18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a completeness theorem for protocols with honest majority. In: Proc. 19th STOC, pp. 218–229 (1987)

    Google Scholar 

  19. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation with optimal resilience (extended abstract). In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005)

    Google Scholar 

  20. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic communication (2008), eprint.iacr.org

  21. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

    Google Scholar 

  22. Nielsen, J.B.: A threshold pseudorandom function construction and its applications. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 401–416. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  24. Prabhu, B., Srinathan, K., Rangan, C.P.: Asynchronous unconditionally secure computation: An efficiency improvement. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 93–107. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luca Aceto Ivan Damgård Leslie Ann Goldberg Magnús M. Halldórsson Anna Ingólfsdóttir Igor Walukiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirt, M., Nielsen, J.B., Przydatek, B. (2008). Asynchronous Multi-Party Computation with Quadratic Communication. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70583-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70583-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70582-6

  • Online ISBN: 978-3-540-70583-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics