Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Proving Bounds on Real-Valued Functions with Computations

  • Conference paper
Automated Reasoning (IJCAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5195))

Included in the following conference series:

Abstract

Interval-based methods are commonly used for computing numerical bounds on expressions and proving inequalities on real numbers. Yet they are hardly used in proof assistants, as the large amount of numerical computations they require keeps them out of reach from deductive proof processes. However, evaluating programs inside proofs is an efficient way for reducing the size of proof terms while performing numerous computations. This work shows how programs combining automatic differentiation with floating-point and interval arithmetic can be used as efficient yet certified solvers. They have been implemented in a library for the Coq proof system. This library provides tactics for proving inequalities on real-valued expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grégoire, B., Théry, L.: A purely functional library for modular arithmetic and its application to certifying large prime numbers. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423–437. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Grégoire, B., Théry, L., Werner, B.: A computational approach to Pocklington certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 97–113. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Mathematical Structure in Computer Sciences 17(1) (2007)

    Google Scholar 

  4. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Harrison, J.: Floating point verification in HOL light: The exponential function. In: Algebraic Methodology and Software Technology, 246–260 (1997)

    Google Scholar 

  6. Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)

    Google Scholar 

  7. Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer, Heidelberg (2005)

    Google Scholar 

  8. Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In: Montuschi, P., Schwarz, E. (eds.) Proceedings of the 17th IEEE Symposium on Computer Arithmetic, Cape Cod, MA, USA, pp. 188–195 (2005)

    Google Scholar 

  9. Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408–422. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Stevenson, D., et al.: An American national standard: IEEE standard for binary floating point arithmetic. ACM SIGPLAN Notices 22(2), 9–25 (1987)

    Google Scholar 

  11. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    MATH  Google Scholar 

  12. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Daumas, M., Rideau, L., Théry, L.: A generic library of floating-point numbers and its application to exact computing. In: Proceedings of the 14th International Conference on Theorem Proving in Higher Order Logics, Edinburgh, Scotland, pp. 169–184 (2001)

    Google Scholar 

  14. Boldo, S.: Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École Normale Supérieure de Lyon (2004)

    Google Scholar 

  15. Melquiond, G.: De l’arithmétique d’intervalles à la certification de programmes. PhD thesis, École Normale Supérieure de Lyon, Lyon, France (2006)

    Google Scholar 

  16. Spiwack, A.: Ajouter des entiers machine à Coq. Technical report (2006)

    Google Scholar 

  17. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Boutin, S.: Using reflection to build efficient and certified decision procedures. In: Theoretical Aspects of Computer Software, pp. 515–529 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alessandro Armando Peter Baumgartner Gilles Dowek

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melquiond, G. (2008). Proving Bounds on Real-Valued Functions with Computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71070-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71069-1

  • Online ISBN: 978-3-540-71070-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics