Abstract
Interval-based methods are commonly used for computing numerical bounds on expressions and proving inequalities on real numbers. Yet they are hardly used in proof assistants, as the large amount of numerical computations they require keeps them out of reach from deductive proof processes. However, evaluating programs inside proofs is an efficient way for reducing the size of proof terms while performing numerous computations. This work shows how programs combining automatic differentiation with floating-point and interval arithmetic can be used as efficient yet certified solvers. They have been implemented in a library for the Coq proof system. This library provides tactics for proving inequalities on real-valued expressions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Grégoire, B., Théry, L.: A purely functional library for modular arithmetic and its application to certifying large prime numbers. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423–437. Springer, Heidelberg (2006)
Grégoire, B., Théry, L., Werner, B.: A computational approach to Pocklington certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 97–113. Springer, Heidelberg (2006)
Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Mathematical Structure in Computer Sciences 17(1) (2007)
Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)
Harrison, J.: Floating point verification in HOL light: The exponential function. In: Algebraic Methodology and Software Technology, 246–260 (1997)
Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)
Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer, Heidelberg (2005)
Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In: Montuschi, P., Schwarz, E. (eds.) Proceedings of the 17th IEEE Symposium on Computer Arithmetic, Cape Cod, MA, USA, pp. 188–195 (2005)
Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408–422. Springer, Heidelberg (2006)
Stevenson, D., et al.: An American national standard: IEEE standard for binary floating point arithmetic. ACM SIGPLAN Notices 22(2), 9–25 (1987)
Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Heidelberg (2001)
Daumas, M., Rideau, L., Théry, L.: A generic library of floating-point numbers and its application to exact computing. In: Proceedings of the 14th International Conference on Theorem Proving in Higher Order Logics, Edinburgh, Scotland, pp. 169–184 (2001)
Boldo, S.: Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École Normale Supérieure de Lyon (2004)
Melquiond, G.: De l’arithmétique d’intervalles à la certification de programmes. PhD thesis, École Normale Supérieure de Lyon, Lyon, France (2006)
Spiwack, A.: Ajouter des entiers machine à Coq. Technical report (2006)
Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg (2000)
Boutin, S.: Using reflection to build efficient and certified decision procedures. In: Theoretical Aspects of Computer Software, pp. 515–529 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Melquiond, G. (2008). Proving Bounds on Real-Valued Functions with Computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-71070-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71069-1
Online ISBN: 978-3-540-71070-7
eBook Packages: Computer ScienceComputer Science (R0)