Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Logical Difference Problem for Description Logic Terminologies

  • Conference paper
Automated Reasoning (IJCAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5195))

Included in the following conference series:

  • 1044 Accesses

Abstract

We consider the problem of computing the logical difference between distinct versions of description logic terminologies. For the lightweight description logic \(\mathcal{ EL}\), we present a tractable algorithm which, given two terminologies and a signature, outputs a set of concepts, which can be regarded as the logical difference between the two terminologies. As a consequence, the algorithm can also decide whether they imply the same concept implications in the signature. A prototype implementation CEX of this algorithm is presented and experimental results based on distinct versions of \(\textsc{Snomed ct}\), the Systematized Nomenclature of Medicine, Clinical Terms, are discussed. Finally, results regarding the relation to uniform interpolants and possible extensions to more expressive description logics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Proceedings of IJCAI 2003, pp. 325–330. Morgan Kaufmann, San Francisco (2003); Long version available as LTCS Report 02-02

    Google Scholar 

  2. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\mathcal{EL}^+\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. The Caml team, http://caml.inria.fr/contact.en.html

  5. Flögel, A., Büning, H.K., Lettmann, T.: On the restricted equivalence of subclasses of propositional logic. ITA 27(4), 327–340 (1993)

    MATH  Google Scholar 

  6. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? a case for conservative extensions in description logics. In: Proceedings of KR 2006, pp. 187–197. AAAI Press, Menlo Park (2006)

    Google Scholar 

  7. Ghilardi, S., Lutz, C., Wolter, F., Zakharyaschev, M.: Conservative extensions in modal logics. In: Proceedings of AiML-6, pp. 187–207. College Publications (2006)

    Google Scholar 

  8. Ghilardi, S., Zawadowski, M.: Undefinability of propositional quantifiers in the modal system S4. Studia Logica 55(2), 259–271 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting modules from ontologies. In: Proceedings of WWW 2007, pp. 717–726. ACM Press, New York (2007)

    Chapter  Google Scholar 

  10. Hofmann, M.: Proof-theoretic approach to description logic. In: Proceedings of LICS 2005, pp. 229–237. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  11. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description logic terminologies (manuscript 2008), http://www.csc.liv.ac.uk/~frank/publ/publ.html

  12. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics. In: Proceedings of IJCAI 2007, pp. 453–458. AAAI Press, Menlo Park (2007)

    Google Scholar 

  13. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic \(\mathcal{EL}\). In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 84–99. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Noy, N.F., Musen, M.: Promptdiff: A fixed-point algorithm for comparing ontology versions. In: Proceedings of AAAI 2002, pp. 744–750. AAAI Press, Menlo Park (2002)

    Google Scholar 

  15. Pitts, A.: On an interpretation of second-order quantification in first-order intuitionistic propositional logic. Journal of Symbolic Logic 57(1), 33–52 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calculation of subsumption: Experience with SNOMED-RT. In: JAMIA, Fall Symposium Special Issue (2000)

    Google Scholar 

  18. Visser, A.: Uniform interpolation and layered bisimulation. In: Gödel 1996 (Brno, 1996). Lecture Notes Logic, vol. 6, pp. 139–164. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alessandro Armando Peter Baumgartner Gilles Dowek

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Konev, B., Walther, D., Wolter, F. (2008). The Logical Difference Problem for Description Logic Terminologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71070-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71069-1

  • Online ISBN: 978-3-540-71070-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics