Abstract
This paper presents verified quantifier elimination procedures for dense linear orders (DLO), for real and for integer linear arithmetic. The DLO procedures are new. All procedures are defined and verified in the theorem prover Isabelle/HOL, are executable and can be applied to HOL formulae themselves (by reflection).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 31–43. Springer, Heidelberg (2006)
Boyer, R.S., Moore, J.S.: Metafunctions: proving them correct and using them efficiently as new proof procedures. In: Boyer, R., Moore, J. (eds.) The Correctness Problem in Computer Science, pp. 103–184. Academic Press, London (1981)
Chaieb, A.: Verifying mixed real-integer quantifier elimination. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 528–540. Springer, Heidelberg (2006)
Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for Presburger arithmetic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 367–380. Springer, Heidelberg (2005)
Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press (1972)
Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Computing 4, 69–76 (1975)
Gonthier, G.: A computer-checked proof of the four-colour theorem, http://research.microsoft.com/~gonthier/4colproof.pdf
Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)
Harrison, J.: Introduction to Logic and Automated Theorem Proving. Cambridge University Press, Cambridge (forthcoming)
Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 159–174. Springer, Heidelberg (2001)
Langford, C.: Some theorems on deducibility. Annals of Mathematics (2nd Series) 28, 16–40 (1927)
Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36, 450–462 (1993)
Mahboubi, A.: Contributions à la certification des calculs sur ℝ: théorie, preuves, programmation. PhD thesis, Université de Nice (2006)
McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)
Nipkow, T.: Reflecting quantifier elimination for linear arithmetic. In: Grumberg, O., Nipkow, T., Pfaller, C. (eds.) Formal Logical Methods for System Security and Correctness, pp. 245–266. IOS Press, Amsterdam (2008)
Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Norrish, M.: Complete integer decision procedures as derived rules in HOL. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer, Heidelberg (2003)
Obua, S.: Proving bounds for real linear programs in Isabelle/HOL. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)
Weispfenning, V.: The complexity of linear problems in fields. J. Symbolic Computation 5, 3–27 (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nipkow, T. (2008). Linear Quantifier Elimination. In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-71070-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71069-1
Online ISBN: 978-3-540-71070-7
eBook Packages: Computer ScienceComputer Science (R0)