Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Linear Quantifier Elimination

  • Conference paper
Automated Reasoning (IJCAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5195))

Included in the following conference series:

Abstract

This paper presents verified quantifier elimination procedures for dense linear orders (DLO), for real and for integer linear arithmetic. The DLO procedures are new. All procedures are defined and verified in the theorem prover Isabelle/HOL, are executable and can be applied to HOL formulae themselves (by reflection).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 31–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Boyer, R.S., Moore, J.S.: Metafunctions: proving them correct and using them efficiently as new proof procedures. In: Boyer, R., Moore, J. (eds.) The Correctness Problem in Computer Science, pp. 103–184. Academic Press, London (1981)

    Google Scholar 

  3. Chaieb, A.: Verifying mixed real-integer quantifier elimination. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 528–540. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for Presburger arithmetic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 367–380. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press (1972)

    Google Scholar 

  6. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Computing 4, 69–76 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gonthier, G.: A computer-checked proof of the four-colour theorem, http://research.microsoft.com/~gonthier/4colproof.pdf

  8. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Harrison, J.: Introduction to Logic and Automated Theorem Proving. Cambridge University Press, Cambridge (forthcoming)

    Google Scholar 

  10. Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 159–174. Springer, Heidelberg (2001)

    Google Scholar 

  11. Langford, C.: Some theorems on deducibility. Annals of Mathematics (2nd Series) 28, 16–40 (1927)

    Article  MathSciNet  Google Scholar 

  12. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36, 450–462 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mahboubi, A.: Contributions à la certification des calculs sur ℝ: théorie, preuves, programmation. PhD thesis, Université de Nice (2006)

    Google Scholar 

  14. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)

    Google Scholar 

  15. Nipkow, T.: Reflecting quantifier elimination for linear arithmetic. In: Grumberg, O., Nipkow, T., Pfaller, C. (eds.) Formal Logical Methods for System Security and Correctness, pp. 245–266. IOS Press, Amsterdam (2008)

    Google Scholar 

  16. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  17. Norrish, M.: Complete integer decision procedures as derived rules in HOL. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Obua, S.: Proving bounds for real linear programs in Isabelle/HOL. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)

    Google Scholar 

  19. Weispfenning, V.: The complexity of linear problems in fields. J. Symbolic Computation 5, 3–27 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alessandro Armando Peter Baumgartner Gilles Dowek

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nipkow, T. (2008). Linear Quantifier Elimination. In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71070-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71069-1

  • Online ISBN: 978-3-540-71070-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics