Abstract
Pawlak introduced approximation spaces in his seminal work on rough sets more than two decades ago. In this paper, we show that approximation spaces are basic structures for knowledge discovery from multi-relational data. The utility of approximation spaces as fundamental objects constructed for concept approximation is emphasized. Examples of basic concepts are given throughout this paper to illustrate how approximation spaces can be beneficially used in many settings. The contribution of this paper is the presentation of an approximation space-based framework for doing research in various forms of knowledge discovery in multi relational data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonchi, F., Boulicaut, J.-F. (eds.): Knowledge Discovery in Inductive Databases. LNCS, vol. 3933. Springer, Heidelberg (2006)
Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer, Berlin (2001)
Łukasiewicz, J.: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung, Kraków 1913. In: Borkowski, L. (ed.) Jan Łukasiewicz - Selected Works, North-Holland, Amsterdam (1970)
Milton, R.S., Maheswari, V.U., Siromoney, A.: Rough Sets and Relational Learning. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 321–337. Springer, Heidelberg (2004)
Orłowska, E., Szałas, A. (eds.): Relational Methods for Computer Science Applications. Physica–Verlag, Heidelberg (2001)
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Springer, Berlin (2004)
Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1 and 2. Physica-Verlag, Heidelberg (1998)
Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundamenta Informaticae 27, 245–253 (1996)
Skowron, A., et al.: Calculi of Approximation Spaces. Fundamenta Informaticae 72(1–3), 363–378 (2006)
Stepaniuk, J.: Rough relations and logics. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1. Methodology and Applications, pp. 248–260. Physica Verlag, Heidelberg (1998)
Stepaniuk, J.: Knowledge Discovery by Application of Rough Set Models. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, pp. 137–233. Physica–Verlag, Heidelberg (2000)
Stepaniuk, J., Góralczuk, L.: An Algorithm Generating First Order Rules Based on Rough Set Methods (in Polish). In: Stepaniuk, J. (ed.) Zeszyty Naukowe Politechniki Białostockiej Informatyka nr. 1, pp. 235–250 (2002)
Stepaniuk, J., Honko, P.: Learning First–Order Rules: A Rough Set Approach. Fundamenta Informaticae 61(2), 139–157 (2004)
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Stepaniuk, J. (2007). Approximation Spaces in Multi Relational Knowledge Discovery. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J., Orłowska, E., Polkowski, L. (eds) Transactions on Rough Sets VI. Lecture Notes in Computer Science, vol 4374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71200-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-71200-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71198-8
Online ISBN: 978-3-540-71200-8
eBook Packages: Computer ScienceComputer Science (R0)