Abstract
A new Relevance Feedback (RF) technique called Weight Propagation has been developed which provides greater retrieval effectiveness and computational efficiency than previously described techniques. Documents judged relevant by the user propagate positive weights to documents close by in vector similarity space, while documents judged not relevant propagate negative weights to such neighbouring documents. Retrieval effectiveness is improved since the documents are treated as independent vectors rather than being merged into a single vector as is the case with traditional vector model RF techniques, or by determining the documents relevancy based in part on the lengths of all the documents as with traditional probabilistic RF techniques. Improving the computational efficiency of Relevance Feedback by considering only documents in a given neighbourhood means that the Weight Propagation technique can be used with large collections.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw Hill, New York (1983)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval, p. 10. Addison-Wesley, New York (1999)
Zhou, X.S., Hunag, T.S.: Small sample learning during multimedia retrieval using bias map. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii, Dec. 2001, IEEE Computer Society Press, Los Alamitos (2001)
Dunlop, M.D.: The effect of accessing non-matching documents on relevance feedback. ACM Transactions on Information Systems 15(2), 137–153 (1997)
Rocchio Jr., G.: Relevance feedback in information Retrieval. In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing, Prentice-Hall, Englewood Cliffs (1971)
Ide, E.: New experiments in relevance feedback. In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing, Prentice-Hall, Englewood Cliffs (1971)
Robertson, S.E., Sparck-Jones, K.: Relevance weighting of search terms. Journal of the American Society of Information Science, 129-146 (1976)
van Rijsbergen, C.J.: Information retrieval. Buttersworth, London (1979)
Robertson, S.E., Walker, S., Beaulieu, M.M.: Okapi at TREC-7: automatic ad hoc, filtering, VLC and interactive track. In: Proceedings of the 7th Text Retrieval Conference (TREC7), Gaithersburg, MD, USA. Nist Special Publication 500-242, pp. 253–264 (1998)
Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans, LA, USA, pp. 334–342. ACM Press, New York (2001)
Amati, G., Carpineto, C., Romano, G.: Italian monolingual information retrieval with prosit. In: Peters, C., Braschler, M., Gonzalo, J. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 182–191. Springer, Heidelberg (2003)
Amati, G., Carpineto, C., Romano, G.: Fub at Trec-10 web track: A probabilistic framework for topic relevance term weighting. In: Proceedings of the 10th Text REtrieval Conference (TREC-10), NIST Special Publication 500-250, Gaithersburg, MD, USA, pp. 182–191 (2001)
Amati, G., van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring divergence from randomness. ACM Transactions on Information Systems 20(4), 357–389 (2002)
Yamout, F., Oakes, M., Tait, J.: Relevance feedback using weight propagation. In: Proceedings of the 28th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, ACM Press, New York (2006)
Sander, P.V., Peleshchuk, D., Grosz, B.J.: A Scalable, Distributed Algorithm for Efficient Task Allocation. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636, Springer, Heidelberg (2003)
Chakrabarti, S., et al.: Mining the Link Structure of the World Wide Web. IEEE Computer (August 1999)
Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. J. ACM 6(5), 604–632 (1999)
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: The proceedings of the 18th ICDE Conference (2002)
Cortes, C., Pregibon, D., Volinsky, C.: Communities of interest. In: Hoffmann, F., et al. (eds.) IDA 2001. LNCS, vol. 2189, Springer, Heidelberg (2001)
Yamout, F., Moghrabi, I., Oakes, M.: Query and relevance feedback in latent semantic index with reduced time complexity. In: IASTED International Conference on Database Applications - DBA (2004)
Harman, D.: Relevance feedback revisited. In: Proceedings of the Fifth International SIGIR Conference on Research and Development in IR, pp. 1–10 (1992)
Rose, D., Stevens, C.: V-twin: A lightweight engine for interactive use. In: NIST Special Publication 500-238: The 5th Text Retrieval Conference (TREC-5), pp. 279–290 (1996)
Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining (2000)
Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowledge engineering review 18(2), 95–145 (2003)
Efthimiadis, N.E.: Query expansion. Annual Review of Information Systems and Technology 31, 121–187 (1996)
Croft, W.B., Harper, D.J.: Using probabilistic models of document retrieval without relevance information. Journal of Documentation 35(4), 285–295 (1979)
CSIRO TREC Web Tracks homepage (2001), http://www.ted.cmis.csiro.au/TRECWeb/
Yamout, F., et al.: Further Enhancement to the Porter’s Stemming Algorithm. In: TIR 2004, Germany (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Yamout, F., Oakes, M., Tait, J. (2007). Relevance Feedback Using Weight Propagation Compared with Information-Theoretic Query Expansion. In: Amati, G., Carpineto, C., Romano, G. (eds) Advances in Information Retrieval. ECIR 2007. Lecture Notes in Computer Science, vol 4425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71496-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-71496-5_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71494-1
Online ISBN: 978-3-540-71496-5
eBook Packages: Computer ScienceComputer Science (R0)