Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SAFIRE: Towards Standardized Semantic Rich Image Annotation

  • Conference paper
Adaptive Multimedia Retrieval: User, Context, and Feedback (AMR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4398))

Included in the following conference series:

Abstract

Most of the currently existing image retrieval systems make use of either low-level features or semantic (textual) annotations. A combined usage during annotation and retrieval is rarely attempted. In this paper, we propose a standardized annotation framework that integrates semantic and feature based information about the content of images. The presented approach is based on the MPEG-7 standard with some minor extensions. The proposed annotation system SAFIRE (Semantic Annotation Framework for Image REtrieval) enables the combined use of low-level features and annotations that can be assigned to arbitrary hierarchically organized image segments. Besides the framework itself, we discuss query formalisms required for this unified retrieval approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellman, R., Giertz, M.: On the Analytic Formalism of the Theory of Fuzzy Sets. Information Science 5, 149–156 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bimbo, A.D.: Visual Information Retrieval. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  3. Bloehdorn, S., et al.: Semantic annotation of images and videos for multimedia analysis. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, Springer, Heidelberg (2005)

    Google Scholar 

  4. Boughanem, M., Loiseau, Y., Prade, H.: Rank-ordering documents according to their relevance in information retrieval using refinements of ordered-weighted aggregations. In: Adaptive Multimedia Retrieval: User, Context, and Feedback, Postproc. of 3rd Int. Workshop, pp. 44–54. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Boulgouris, N.V., et al.: Segmentation and content-based watermarking for color image and image region indexing and retrieval. EURASIP Journal on Applied Signal Processing, 418–431 (2002)

    Google Scholar 

  6. Carson, C., et al.: Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)

    Article  Google Scholar 

  7. Carson, C., et al.: Blobworld: A system for region-based image indexing and retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, Springer, Heidelberg (1999)

    Google Scholar 

  8. Ciaccia, P., et al.: Imprecision and user preferences in multimedia queries: A generic algebraic approach. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS, vol. 1762, pp. 50–71. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Fagin, R.: Fuzzy Queries in Multimedia Database Systems. In: Proc. of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Seattle, Washington, June 1-3, 1998, pp. 1–10. ACM Press, New York (1998)

    Chapter  Google Scholar 

  10. Feng, H., Chua, T.-S.: A bootstrapping approach to annotating large image collection. In: MIR ’03: Proc. of the 5th ACM SIGMM Int. Workshop on Multimedia Information Retrieval, Berkeley, California, pp. 55–62. ACM Press, New York (2003), doi:10.1145/973264.973274

    Chapter  Google Scholar 

  11. Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design and Implementation. Idea Group Publishing, Hershey (2005)

    Google Scholar 

  12. Hasida, K.: The linguistic DS: Linguisitic description in MPEG-7. The Computing Research Repository (CoRR), cs.CL/0307044 (2003)

    Google Scholar 

  13. Hollink, L., et al.: Semantic annotation of image collections. In: Proc. of Workshop on Knowledge Markup and Semantic Annotation (KCAP’03) (2003)

    Google Scholar 

  14. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, New Jersey (1988)

    MATH  Google Scholar 

  15. Konishi, S., Yuille, A.L.: Statistical cues for domain specific image segmentation withperformance analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 125–132. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  16. Kosinov, S., Marchand-Maillet, S.: Overview of approaches to semantic augmentation of multimedia databases for efficient access and content retrieval. In: Adaptive Multimedia Retrieval, Postproc. of 1st Int. Workshop, pp. 19–35 (2004)

    Google Scholar 

  17. Lu, J., Ma, S.-p., Zhang, M.: Automatic image annotation based-on model space. In: Proc. of IEEE Int. Conf. on Natural Language Processing and Knowledge Engineering, pp. 455–460. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  18. Lux, M., Becker, J., Krottmaier, H.: Caliph & Emir: Semantic annotation and retrieval in personal digital photo libraries. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 85–89. Springer, Heidelberg (2003)

    Google Scholar 

  19. Martínez, J.M.: MPEG-7: Overview of MPEG-7 description tools, part 2. IEEE MultiMedia 9(3), 83–93 (2002)

    Article  Google Scholar 

  20. Miller, G., et al.: Five papers on WordNet. Int. Journal of Lexicography 3(4) (1990)

    Google Scholar 

  21. Natsev, A.P., Naphade, M.R., Tesic, J.: Learning the Semantics of Multimedia Queries and Concepts from a Small Number of Examples. In: ACM Press (ed.) Proc. of the 13th ACM Int. Conf. on Multimedia, pp. 598–607. ACM Press, New York (2005)

    Chapter  Google Scholar 

  22. Nürnberger, A., Detyniecki, M.: Adaptive multimedia retrieval: From data to user interaction. In: Do smart adaptive systems exist? - Best practice for selection and combination of intelligent methods, Springer, Heidelberg (2005)

    Google Scholar 

  23. Omhover, J.-F., Detyniecki, M.: Strict: An image retrieval platform for queries based on regional content. In: Enser, P.G.B., et al. (eds.) CIVR 2004. LNCS, vol. 3115, Springer, Heidelberg (2004)

    Google Scholar 

  24. Omhover, J.-F., Rifqi, M., Detyniecki, M.: Ranking invariance based on similarity measures in document retrieval. In: Adaptive Multimedia Retrieval: User, Context, and Feedback, Postproc. of 3rd Int. Workshop, pp. 55–64. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Rüger, S.: Putting the user in the loop: Visual resource discovery. In: Adaptive Multimedia Retrieval: User, Context, and Feedback, Postproc. of 3rd Int. Workshop, pp. 1–18. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Schmitt, I.: Basic Concepts for Unifying Queries of Database and Retrieval Systems. Technical Report 7, Fakultät für Informatik, Univ. Magdeburg (2005)

    Google Scholar 

  27. Schmitt, I., Schulz, N.: Similarity Relational Calculus and its Reduction to a Similarity Algebra. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 252–272. Springer, Heidelberg (2004)

    Google Scholar 

  28. Schmitt, I., Schulz, N., Herstel, T.: WS-QBE: A QBE-like Query Language for Complex Multimedia Queries. In: Proc. of the 11th Int. Multimedia Modelling Conf (MMM’05), pp. 222–229. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  29. Schulz, N., Schmitt, I.: A Survey of Weighted Scoring Rules in Multimedia Database Systems. Preprint 7, Fakultät für Informatik, Univ. Magdeburg (2002)

    Google Scholar 

  30. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 246–252. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  31. Veltkamp, R.C., Tanase, M.: Content-based image retrieval systems: A survey. Technical Report UU-CS-2000-34, CS Dept., Utrecht University (2000)

    Google Scholar 

  32. Voisine, N., et al.: A genetic algorithm-based approach to knowledge-assisted video analysis. In: IEEE International Conference on Image Processing, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  33. Vossen, P.: EuroWordNet general document version 3, final, July 19 (1999)

    Google Scholar 

  34. Zadeh, L.A.: Fuzzy Logic. IEEE Computer 21(4), 83–93 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stéphane Marchand-Maillet Eric Bruno Andreas Nürnberger Marcin Detyniecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Hentschel, C., Nürnberger, A., Schmitt, I., Stober, S. (2007). SAFIRE: Towards Standardized Semantic Rich Image Annotation. In: Marchand-Maillet, S., Bruno, E., Nürnberger, A., Detyniecki, M. (eds) Adaptive Multimedia Retrieval: User, Context, and Feedback. AMR 2006. Lecture Notes in Computer Science, vol 4398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71545-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71545-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71544-3

  • Online ISBN: 978-3-540-71545-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics