Abstract
Our group has recently developed a compact, universal protein binding microarray (PBM) that can be used to determine the binding preferences of transcription factors (TFs) [1]. This design represents all possible sequence variants of a given length k (i.e., all k-mers) on a single array, allowing a complete characterization of the binding specificities of a given TF. Here, we present the mathematical foundations of this design based on de Bruijn sequences generated by linear feedback shift registers. We show that these sequences represent the maximum number of variants for any given set of array dimensions (i.e., number of spots and spot lengths), while also exhibiting desirable pseudo-randomness properties. Moreover, de Bruijn sequences can be selected that represent gapped sequence patterns, further increasing the coverage of the array. This design yields a powerful experimental platform that allows the binding preferences of TFs to be determined with unprecedented resolution.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep 3rd, P.W., Bulyk, M.L.: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429–1435 (2006)
Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2003)
Benos, P.V., Lapedes, A.S., Stormo, G.D.: Is there a code for protein-DNA recognition? Probab(ilistical)ly. Bioessays 24, 466–475 (2002)
Das, P.M., Ramachandran, K., van Wert, J., Singal, R.: Chromatin immunoprecipitation assay. Biotechniques 37, 961–969 (2004)
Wyrick, J.J., Young, R.A.: Deciphering gene expression regulatory networks. Curr. Opin. Genet. Dev. 12, 130–136 (2002)
Oliphant, A.R., Brandl, C.J., Struhl, K.: Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol. Cell. Biol. 9, 2944–2949 (1989)
Bulyk, M.L., Huang, X., Choo, Y., Church, G.M.: Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc. Natl. Acad. Sci. U S A 98, 7158–7163 (2001)
Mukherjee, S., Berger, M.F., Jona, G., et al.: Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat. Genet. 36, 1331–1339 (2004)
Linnell, J., Mott, R., Field, S., Kwiatkowski, D.P., Ragoussis, J., Udalova, I.A.: Quantitative high-throughput analysis of transcription factor binding specificities. Nucleic Acids Res. 32, e44 (2004)
Warren, C.L., Kratochvil, N.C., Hauschild, K.E., et al.: Defining the sequence-recognition profile of DNA-binding molecules. Proc. Natl. Acad. Sci. U S A 103, 867–872 (2006)
De Bruijn, N.G.: A Combinatorial Problem. Proc. Kon. Ned. Akad. v.Wetensch. 49, 758–764 (1946)
Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC Press, New York (2004)
Joyner, D., Kreminski, R., Turisco, J.: Applied Abstract Algebra. The Johns Hopkins University Press, Baltimore (2004)
Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1967)
Ben-Dor, A., Karp, R., Schwikowski, B., Yakhini, Z.: Universal DNA tag systems: a combinatorial design scheme. J. Comput. Biol. 7, 503–519 (2000)
Mintseris, J., Eisen, M.B.: Design of a combinatorial DNA microarray for protein-DNA interaction studies. BMC Bioinformatics 7, 429 (2006)
Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Res. 14, 1786–1796 (2004)
Zhang, Y., Waterman, M.S.: An Eulerian path approach to local multiple alignment for DNA sequences. Proc. Natl. Acad. Sci. U S A 102, 1285–1290 (2005)
Stewart, I.: Galois Theory. Chapman & Hall, London (1989)
Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)
Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1999)
Singh-Gasson, S., Green, R.D., Yue, Y., et al.: Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17, 974–978 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Philippakis, A.A., Qureshi, A.M., Berger, M.F., Bulyk, M.L. (2007). Design of Compact, Universal DNA Microarrays for Protein Binding Microarray Experiments. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-71681-5_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71680-8
Online ISBN: 978-3-540-71681-5
eBook Packages: Computer ScienceComputer Science (R0)