Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design of Compact, Universal DNA Microarrays for Protein Binding Microarray Experiments

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

  • 1634 Accesses

Abstract

Our group has recently developed a compact, universal protein binding microarray (PBM) that can be used to determine the binding preferences of transcription factors (TFs) [1]. This design represents all possible sequence variants of a given length k (i.e., all k-mers) on a single array, allowing a complete characterization of the binding specificities of a given TF. Here, we present the mathematical foundations of this design based on de Bruijn sequences generated by linear feedback shift registers. We show that these sequences represent the maximum number of variants for any given set of array dimensions (i.e., number of spots and spot lengths), while also exhibiting desirable pseudo-randomness properties. Moreover, de Bruijn sequences can be selected that represent gapped sequence patterns, further increasing the coverage of the array. This design yields a powerful experimental platform that allows the binding preferences of TFs to be determined with unprecedented resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep 3rd, P.W., Bulyk, M.L.: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429–1435 (2006)

    Article  Google Scholar 

  2. Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2003)

    Article  Google Scholar 

  3. Benos, P.V., Lapedes, A.S., Stormo, G.D.: Is there a code for protein-DNA recognition? Probab(ilistical)ly. Bioessays 24, 466–475 (2002)

    Article  Google Scholar 

  4. Das, P.M., Ramachandran, K., van Wert, J., Singal, R.: Chromatin immunoprecipitation assay. Biotechniques 37, 961–969 (2004)

    Google Scholar 

  5. Wyrick, J.J., Young, R.A.: Deciphering gene expression regulatory networks. Curr. Opin. Genet. Dev. 12, 130–136 (2002)

    Article  Google Scholar 

  6. Oliphant, A.R., Brandl, C.J., Struhl, K.: Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol. Cell. Biol. 9, 2944–2949 (1989)

    Google Scholar 

  7. Bulyk, M.L., Huang, X., Choo, Y., Church, G.M.: Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc. Natl. Acad. Sci. U S A 98, 7158–7163 (2001)

    Article  Google Scholar 

  8. Mukherjee, S., Berger, M.F., Jona, G., et al.: Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat. Genet. 36, 1331–1339 (2004)

    Article  Google Scholar 

  9. Linnell, J., Mott, R., Field, S., Kwiatkowski, D.P., Ragoussis, J., Udalova, I.A.: Quantitative high-throughput analysis of transcription factor binding specificities. Nucleic Acids Res. 32, e44 (2004)

    Article  Google Scholar 

  10. Warren, C.L., Kratochvil, N.C., Hauschild, K.E., et al.: Defining the sequence-recognition profile of DNA-binding molecules. Proc. Natl. Acad. Sci. U S A 103, 867–872 (2006)

    Article  Google Scholar 

  11. De Bruijn, N.G.: A Combinatorial Problem. Proc. Kon. Ned. Akad. v.Wetensch. 49, 758–764 (1946)

    Google Scholar 

  12. Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC Press, New York (2004)

    MATH  Google Scholar 

  13. Joyner, D., Kreminski, R., Turisco, J.: Applied Abstract Algebra. The Johns Hopkins University Press, Baltimore (2004)

    MATH  Google Scholar 

  14. Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1967)

    MATH  Google Scholar 

  15. Ben-Dor, A., Karp, R., Schwikowski, B., Yakhini, Z.: Universal DNA tag systems: a combinatorial design scheme. J. Comput. Biol. 7, 503–519 (2000)

    Article  Google Scholar 

  16. Mintseris, J., Eisen, M.B.: Design of a combinatorial DNA microarray for protein-DNA interaction studies. BMC Bioinformatics 7, 429 (2006)

    Article  Google Scholar 

  17. Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Res. 14, 1786–1796 (2004)

    Article  Google Scholar 

  18. Zhang, Y., Waterman, M.S.: An Eulerian path approach to local multiple alignment for DNA sequences. Proc. Natl. Acad. Sci. U S A 102, 1285–1290 (2005)

    Article  MathSciNet  Google Scholar 

  19. Stewart, I.: Galois Theory. Chapman & Hall, London (1989)

    MATH  Google Scholar 

  20. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)

    Article  Google Scholar 

  21. Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Singh-Gasson, S., Green, R.D., Yue, Y., et al.: Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17, 974–978 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Philippakis, A.A., Qureshi, A.M., Berger, M.F., Bulyk, M.L. (2007). Design of Compact, Universal DNA Microarrays for Protein Binding Microarray Experiments. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics