Abstract
Publicly-available data sets provide detailed and large-scale information on multiple types of molecular interaction networks in a number of model organisms. These multi-modal universal networks capture a static view of cellular state. An important challenge in systems biology is obtaining a dynamic perspective on these networks by integrating them with gene expression measurements taken under multiple conditions.
We present a top-down computational approach to identify building blocks of molecular interaction networks by
-
(i) integrating gene expression measurements for a particular disease state (e.g., leukaemia) or experimental condition (e.g., treatment with growth serum) with molecular interactions to reveal an active network, which is the network of interactions active in the cell in that disease state or condition and
-
(ii) systematically combining active networks computed for different experimental conditions using set-theoretic formulae to reveal network legos, which are modules of coherently interacting genes and gene products in the wiring diagram.
We propose efficient methods to compute active networks, systematically mine candidate legos, assess the statistical significance of these candidates, arrange them in a directed acyclic graph (DAG), and exploit the structure of the DAG to identify true network legos. We describe methods to assess the stability of our computations to changes in the input and to recover active networks by composing network legos.
We analyse two human datasets using our method. A comparison of three leukaemias demonstrates how a biologist can use our system to identify specific differences between these diseases. A larger-scale analysis of 13 distinct stresses illustrates our ability to compute the building blocks of the interaction networks activated in response to these stresses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the Twentieth International Conference on Very Large Databases, Santiago, Chile, pp. 487–499 (1994)
Armstrong, S., Staunton, J., Silverman, L., Pieters, R., den Boer, M., Minden, M., Sallan, S., Lander, E., Golub, T., Korsmeyer, S.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41–47 (2002)
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene Ontology: tool for the unification of biology. the Gene Ontology Consortium. Nat. Genet. 25(1), 25–29 (2000)
Bader, G.D., Betel, D., Hogue, C.W.V.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31(1), 248–250 (2003)
Bar-Joseph, Z., Gerber, G.K., Lee, T.I., Rinaldi, N.J., Yoo, J.Y., Robert, F., Gordon, D.B., Fraenkel, E., Jaakkola, T.S., Young, R.A., Gifford, D.K.: Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21(11), 1337–1342 (2003)
Basso, K., Margolin, A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37(4), 382–390 (2005)
Bergmann, S., Ihmels, J., Barkai, N.: Similarities and differences in genome-wide expression data of six organisms. PLoS Biol. 2(1), E9 (2003)
Charikar, M.: Greedy approximation algorithms for finding dense components in graphs. In: Proceedings of APPROX (2000)
Cozma, D., Thomas-Tikhonenko, A.: Kit-Activating Mutations in AML: Lessons from PU.1-Induced Murine Erythroleukemia. Cancer Biol. Ther. 5(6), 579–581 (2006)
di Bernardo, D., Thompson, M.J., Gardner, T.S., Chobot, S.E., Eastwood, E.L., Wojtovich, A.P., Elliott, S.J., Schaus, S.E., Collins, J.J.: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol. 23(3), 377–383 (2005)
Gasch, A.P., Spellman, P.T., Kao, C.M., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11(12), 4241–4257 (2000)
Han, J., Bertin, N., Hao, T., Goldberg, D., Berriz, G., Zhang, L., Dupuy, D., Walhout, A., Cusick, M., Roth, F., Vidal, M.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995), 88–93 (2004)
Hartwell, L., Hopfield, J., Leibler, S., Murray, A.: From molecular to modular cell biology. Nature 402(6761 Suppl.), C47–52 (1999)
Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(Suppl. 1), i213–i221 (2005)
Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl. 1), S233–240 (2002)
Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G., Wu, G., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33(Database issue), D428–432 (2005)
Joyce, A.R., Palsson, B.O.: The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell. Biol. 7(3), 198–210 (2006)
Lee, H., Hsu, A., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of human genes across many microarray data sets. Genome Res. 14(6), 1085–1094 (2004)
Lehner, B., Fraser, A.G.: A first-draft human protein-interaction map. Genome Biol. 5(9), R63 (2004)
Luscombe, N., Babu, M., Yu, H., Snyder, M., Teichmann, S., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006), 308–312 (2004)
Murray, J.I., Whitfield, M.L., Trinklein, N.D., Myers, R.M., Brown, P.O., Botstein, D.: Diverse and specific gene expression responses to stresses in cultured human cells. Mol. Biol. Cell. 15(5), 2361–2374 (2004)
Myers, C.L., Robson, D., Wible, A., Hibbs, M.A., Chiriac, C., Theesfeld, C.L., Dolinski, K., Troyanskaya, O.G.: Discovery of biological networks from diverse functional genomic data. Genome Biol. 6(13), R114 (2005)
Peri, S., Navarro, J., Amanchy, R., Kristiansen, T., Jonnalagadda, C., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., Ibarrola, N., Deshpande, N., Shanker, K., Shivashankar, H., Rashmi, B., Ramya, M., Zhao, Z., Chandrika, K., Padma, N., Harsha, H., Yatish, A., Kavitha, M., Menezes, M., Choudhury, D., Suresh, S., Ghosh, N., Saravana, R., Chandran, S., Krishna, S., Joy, M., Anand, S., Madavan, V., Joseph, A., Wong, G., Schiemann, W., Constantinescu, S., Huang, L., Khosravi-Far, R., Steen, H., Tewari, M., Ghaffari, S., Blobe, G., Dang, C., Garcia, J., Pevsner, J., Jensen, O., Roepstorff, P., Deshpande, K., Chinnaiyan, A., Hamosh, A., Chakravarti, A., Pandey, A.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13(10), 2363–2371 (2003)
Ramani, A.K., Bunescu, R.C., Mooney, R.J., Marcotte, E.M.: Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol. 6(5), R40 (2005)
Rhodes, D., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., Chinnaiyan, A.: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. U S A 101(25), 9309–9314 (2004)
Rhodes, D.R., Kalyana-Sundaram, S., Mahavisno, V., Barrette, T.R., Ghosh, D., Chinnaiyan, A.M.: Mining for regulatory programs in the cancer transcriptome. Nature Genetics 37(6), 579–583 (2005)
Rual, J., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G., Gibbons, F., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D., Zhang, L., Wong, S., Franklin, G., Li, S., Albala, J., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R., Vandenhaute, J., Zoghbi, H., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M., Hill, D., Roth, F., Vidal, M.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062), 1173–1178 (2005)
Schnittger, S., Kohl, T.M., Haferlach, T., Kern, W., Hiddemann, W., Spiekermann, K., Schoch, C.: KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107(5), 1791–1799 (2006)
Schwartz, S., Heinecke, A., Zimmermann, M., Creutzig, U., Schoch, C., Harbott, J., Fonatsch, C., Loffler, H., Buchner, T., Ludwig, W.D., Thiel, E.: Expression of the C-kit receptor (CD117) is a feature of almost all subtypes of de novo acute myeloblastic leukemia (AML), including cytogenetically good-risk AML, and lacks prognostic significance. Leuk. Lymphoma 34(1-2), 85–94 (1999)
Segal, E., Friedman, N., Koller, D., Regev, A.: A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36(10), 1090–1098 (2004)
Segal, E., Shapira, M., Regev, A., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)
Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)
Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., Wanker, E.: A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6), 957–968 (2005)
Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643), 249–255 (2003)
Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., Mesirov, J.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA (2005)
Tanay, A., Sharan, R., Kupiec, M., Shamir, R.: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl. Acad. Sci. USA 101(9), 2981–2986 (2004)
Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. In: Proceedings of ISMB 2002, pp. 136–144 (2002)
Tanay, A., Steinfeld, I., Kupiec, M., Shamir, R.: Integrative analysis of genome-wide experiments in the context of a large high-throughput data compendium. Molecular Systems Biology 1(1), msb4100005–E1–msb4100005–E10 (2005)
Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol.Biol.Cell. 13(6), 1977–2000 (2002)
Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. In: SIAM International Conference on Data Mining, pp. 457–473 (2002)
Zhou, X.J., Kao, M.C., Huang, H., Wong, A., Nunez-Iglesias, J., Primig, M., Aparicio, O.M., Finch, C.E., Morgan, T.E., Wong, W.H.: Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat.Biotechnol. 23(2), 238–243 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Murali, T.M., Rivera, C.G. (2007). Network Legos: Building Blocks of Cellular Wiring Diagrams. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-71681-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71680-8
Online ISBN: 978-3-540-71681-5
eBook Packages: Computer ScienceComputer Science (R0)