Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Network Legos: Building Blocks of Cellular Wiring Diagrams

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

Publicly-available data sets provide detailed and large-scale information on multiple types of molecular interaction networks in a number of model organisms. These multi-modal universal networks capture a static view of cellular state. An important challenge in systems biology is obtaining a dynamic perspective on these networks by integrating them with gene expression measurements taken under multiple conditions.

We present a top-down computational approach to identify building blocks of molecular interaction networks by

  • (i) integrating gene expression measurements for a particular disease state (e.g., leukaemia) or experimental condition (e.g., treatment with growth serum) with molecular interactions to reveal an active network, which is the network of interactions active in the cell in that disease state or condition and

  • (ii) systematically combining active networks computed for different experimental conditions using set-theoretic formulae to reveal network legos, which are modules of coherently interacting genes and gene products in the wiring diagram.

We propose efficient methods to compute active networks, systematically mine candidate legos, assess the statistical significance of these candidates, arrange them in a directed acyclic graph (DAG), and exploit the structure of the DAG to identify true network legos. We describe methods to assess the stability of our computations to changes in the input and to recover active networks by composing network legos.

We analyse two human datasets using our method. A comparison of three leukaemias demonstrates how a biologist can use our system to identify specific differences between these diseases. A larger-scale analysis of 13 distinct stresses illustrates our ability to compute the building blocks of the interaction networks activated in response to these stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the Twentieth International Conference on Very Large Databases, Santiago, Chile, pp. 487–499 (1994)

    Google Scholar 

  2. Armstrong, S., Staunton, J., Silverman, L., Pieters, R., den Boer, M., Minden, M., Sallan, S., Lander, E., Golub, T., Korsmeyer, S.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41–47 (2002)

    Article  Google Scholar 

  3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene Ontology: tool for the unification of biology. the Gene Ontology Consortium. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  4. Bader, G.D., Betel, D., Hogue, C.W.V.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31(1), 248–250 (2003)

    Article  Google Scholar 

  5. Bar-Joseph, Z., Gerber, G.K., Lee, T.I., Rinaldi, N.J., Yoo, J.Y., Robert, F., Gordon, D.B., Fraenkel, E., Jaakkola, T.S., Young, R.A., Gifford, D.K.: Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21(11), 1337–1342 (2003)

    Article  Google Scholar 

  6. Basso, K., Margolin, A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37(4), 382–390 (2005)

    Article  Google Scholar 

  7. Bergmann, S., Ihmels, J., Barkai, N.: Similarities and differences in genome-wide expression data of six organisms. PLoS Biol. 2(1), E9 (2003)

    Article  Google Scholar 

  8. Charikar, M.: Greedy approximation algorithms for finding dense components in graphs. In: Proceedings of APPROX (2000)

    Google Scholar 

  9. Cozma, D., Thomas-Tikhonenko, A.: Kit-Activating Mutations in AML: Lessons from PU.1-Induced Murine Erythroleukemia. Cancer Biol. Ther. 5(6), 579–581 (2006)

    Article  Google Scholar 

  10. di Bernardo, D., Thompson, M.J., Gardner, T.S., Chobot, S.E., Eastwood, E.L., Wojtovich, A.P., Elliott, S.J., Schaus, S.E., Collins, J.J.: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol. 23(3), 377–383 (2005)

    Article  Google Scholar 

  11. Gasch, A.P., Spellman, P.T., Kao, C.M., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11(12), 4241–4257 (2000)

    Google Scholar 

  12. Han, J., Bertin, N., Hao, T., Goldberg, D., Berriz, G., Zhang, L., Dupuy, D., Walhout, A., Cusick, M., Roth, F., Vidal, M.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995), 88–93 (2004)

    Article  Google Scholar 

  13. Hartwell, L., Hopfield, J., Leibler, S., Murray, A.: From molecular to modular cell biology. Nature 402(6761 Suppl.), C47–52 (1999)

    Article  Google Scholar 

  14. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(Suppl. 1), i213–i221 (2005)

    Article  Google Scholar 

  15. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl. 1), S233–240 (2002)

    Google Scholar 

  16. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G., Wu, G., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33(Database issue), D428–432 (2005)

    Article  Google Scholar 

  17. Joyce, A.R., Palsson, B.O.: The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell. Biol. 7(3), 198–210 (2006)

    Article  Google Scholar 

  18. Lee, H., Hsu, A., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of human genes across many microarray data sets. Genome Res. 14(6), 1085–1094 (2004)

    Article  Google Scholar 

  19. Lehner, B., Fraser, A.G.: A first-draft human protein-interaction map. Genome Biol. 5(9), R63 (2004)

    Article  Google Scholar 

  20. Luscombe, N., Babu, M., Yu, H., Snyder, M., Teichmann, S., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006), 308–312 (2004)

    Article  Google Scholar 

  21. Murray, J.I., Whitfield, M.L., Trinklein, N.D., Myers, R.M., Brown, P.O., Botstein, D.: Diverse and specific gene expression responses to stresses in cultured human cells. Mol. Biol. Cell. 15(5), 2361–2374 (2004)

    Article  Google Scholar 

  22. Myers, C.L., Robson, D., Wible, A., Hibbs, M.A., Chiriac, C., Theesfeld, C.L., Dolinski, K., Troyanskaya, O.G.: Discovery of biological networks from diverse functional genomic data. Genome Biol. 6(13), R114 (2005)

    Article  Google Scholar 

  23. Peri, S., Navarro, J., Amanchy, R., Kristiansen, T., Jonnalagadda, C., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T., Gronborg, M., Ibarrola, N., Deshpande, N., Shanker, K., Shivashankar, H., Rashmi, B., Ramya, M., Zhao, Z., Chandrika, K., Padma, N., Harsha, H., Yatish, A., Kavitha, M., Menezes, M., Choudhury, D., Suresh, S., Ghosh, N., Saravana, R., Chandran, S., Krishna, S., Joy, M., Anand, S., Madavan, V., Joseph, A., Wong, G., Schiemann, W., Constantinescu, S., Huang, L., Khosravi-Far, R., Steen, H., Tewari, M., Ghaffari, S., Blobe, G., Dang, C., Garcia, J., Pevsner, J., Jensen, O., Roepstorff, P., Deshpande, K., Chinnaiyan, A., Hamosh, A., Chakravarti, A., Pandey, A.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13(10), 2363–2371 (2003)

    Article  Google Scholar 

  24. Ramani, A.K., Bunescu, R.C., Mooney, R.J., Marcotte, E.M.: Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol. 6(5), R40 (2005)

    Article  Google Scholar 

  25. Rhodes, D., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., Chinnaiyan, A.: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. U S A 101(25), 9309–9314 (2004)

    Article  Google Scholar 

  26. Rhodes, D.R., Kalyana-Sundaram, S., Mahavisno, V., Barrette, T.R., Ghosh, D., Chinnaiyan, A.M.: Mining for regulatory programs in the cancer transcriptome. Nature Genetics 37(6), 579–583 (2005)

    Article  Google Scholar 

  27. Rual, J., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G., Gibbons, F., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D., Zhang, L., Wong, S., Franklin, G., Li, S., Albala, J., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R., Vandenhaute, J., Zoghbi, H., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M., Hill, D., Roth, F., Vidal, M.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062), 1173–1178 (2005)

    Article  Google Scholar 

  28. Schnittger, S., Kohl, T.M., Haferlach, T., Kern, W., Hiddemann, W., Spiekermann, K., Schoch, C.: KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107(5), 1791–1799 (2006)

    Article  Google Scholar 

  29. Schwartz, S., Heinecke, A., Zimmermann, M., Creutzig, U., Schoch, C., Harbott, J., Fonatsch, C., Loffler, H., Buchner, T., Ludwig, W.D., Thiel, E.: Expression of the C-kit receptor (CD117) is a feature of almost all subtypes of de novo acute myeloblastic leukemia (AML), including cytogenetically good-risk AML, and lacks prognostic significance. Leuk. Lymphoma 34(1-2), 85–94 (1999)

    Google Scholar 

  30. Segal, E., Friedman, N., Koller, D., Regev, A.: A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36(10), 1090–1098 (2004)

    Article  Google Scholar 

  31. Segal, E., Shapira, M., Regev, A., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)

    Article  Google Scholar 

  32. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)

    Article  Google Scholar 

  33. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., Wanker, E.: A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6), 957–968 (2005)

    Article  Google Scholar 

  34. Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643), 249–255 (2003)

    Article  Google Scholar 

  35. Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., Mesirov, J.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA (2005)

    Google Scholar 

  36. Tanay, A., Sharan, R., Kupiec, M., Shamir, R.: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl. Acad. Sci. USA 101(9), 2981–2986 (2004)

    Article  Google Scholar 

  37. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. In: Proceedings of ISMB 2002, pp. 136–144 (2002)

    Google Scholar 

  38. Tanay, A., Steinfeld, I., Kupiec, M., Shamir, R.: Integrative analysis of genome-wide experiments in the context of a large high-throughput data compendium. Molecular Systems Biology 1(1), msb4100005–E1–msb4100005–E10 (2005)

    Google Scholar 

  39. Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol.Biol.Cell. 13(6), 1977–2000 (2002)

    Article  Google Scholar 

  40. Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. In: SIAM International Conference on Data Mining, pp. 457–473 (2002)

    Google Scholar 

  41. Zhou, X.J., Kao, M.C., Huang, H., Wong, A., Nunez-Iglesias, J., Primig, M., Aparicio, O.M., Finch, C.E., Morgan, T.E., Wong, W.H.: Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat.Biotechnol. 23(2), 238–243 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Murali, T.M., Rivera, C.G. (2007). Network Legos: Building Blocks of Cellular Wiring Diagrams. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics