Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Ant-Based Heuristic for the Railway Traveling Salesman Problem

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4448))

Included in the following conference series:

  • 2340 Accesses

Abstract

We consider the Railway Traveling Salesman Problem, denoted RTSP, in which a salesman using the railway network wishes to visit a certain number of cities to carry out his/her business, starting and ending at the same city, and having the goal to minimize the overall time of the journey. The RTSP is NP-hard and it is related to the Generalized Traveling Salesman Problem. In this paper we present an effective meta-heuristic based on ant colony optimization (ACO) for solving the RTSP. Computational results are reported for real-world and synthetic data. The results obtained demonstrate the superiority of the proposed algorithm in comparison with the existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonabeau, E., Dorigo, M., Tehraulaz, G.: Swarm intelligence from natural to artificial systems. Oxford University Press, Oxford, UK (1999)

    MATH  Google Scholar 

  2. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New ideas in optimization, pp. 11–32. McGraw-Hill, London (1999)

    Google Scholar 

  3. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)

    Article  Google Scholar 

  4. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning approach to the Traveling Salesman Problem. IEEE Trans. Evol. Comp. 1, 53–66 (1997)

    Article  Google Scholar 

  5. Fischetti, M., Salazar, J.J., Toth, P.: The symmetric generalized traveling salesman polytope, Networks, 26, pp. 113–123 (1995)

    Google Scholar 

  6. Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem, Operations Research, vol. 45, pp. 378–394 (1997)

    Google Scholar 

  7. Hadjicharalambous, G., Pop, P., Pyrga, E., Tsaggouris, G., Zaroliagis, C.: The Railway Traveling Salesman Problem, in Algorithmic Methods for Railway Optimization. In: Hadjicharalambous, G., Pop, P., Pyrga, E., Tsaggouris, G., Zaroliagis, C. (eds.) Proc. ATMOS 2004, to appear. Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  8. Pintea, C-M., Pop, P.C., Chira, C.: Reinforcing Ant Colony System for the Generalized Traveling Salesman Problem, In: Proceedings of the First International Conference Bio-Inspired Computing: Theory and Applications, pp. 245–252 (2006)

    Google Scholar 

  9. Schultz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-line: An Empirical Case Study from the Public Railroad Transport, ACM Journal of Experimental Algorithmics, vol. 5:(12) (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pop, P.C., Pintea, C.M., Sitar, C.P. (2007). An Ant-Based Heuristic for the Railway Traveling Salesman Problem. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71805-5_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71804-8

  • Online ISBN: 978-3-540-71805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics