Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC for Gene Expression Data Analysis

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

Recently, the use of Receiver Operating Characteristic (ROC) Curve and the area under the ROC Curve (AUC) has been receiving much attention as a measure of the performance of machine learning algorithms. In this paper, we propose a SVM classifier fusion model using genetic fuzzy system. Genetic algorithms are applied to tune the optimal fuzzy membership functions. The performance of SVM classifiers are evaluated by their AUCs. Our experiments show that AUC-based genetic fuzzy SVM fusion model produces not only better AUC but also better accuracy than individual SVM classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  2. Kittler, J., et al.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  3. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  4. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier Systems. IEEE Trans. Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)

    Article  Google Scholar 

  5. Ho, T.K.: Random Decision Forests. In: Third Int’l Conf. Document Analysis and Recognition, Montreal, pp. 278–282 (1995)

    Google Scholar 

  6. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Trans. Systems, Man, and Cybernetics 22(3), 418–435 (1992)

    Article  Google Scholar 

  7. Qin, Z.-C.: ROC Analysis for Predictions Made by Probabilistic Classifiers. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3119–3124 (2005)

    Google Scholar 

  8. Ling, C.X., Huang, J., Zhang, H.: AUC: A Statistically Consistent and More Discriminating Measure than Accuracy. In: Proc. 18th Int’l Conf. Artificial Intelligence (IJCAI ’03), pp. 329–341 (2003)

    Google Scholar 

  9. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Tech Report HPL-2003-4, HP Laboratories (2003)

    Google Scholar 

  10. Huang, J., Ling, C.X.: Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    Article  Google Scholar 

  11. Zhang, H., Ling, C.X.: Toward Bayesian Classifiers with Accurate Probabilities. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, Springer, Heidelberg (2002)

    Google Scholar 

  12. Hand, D.J., Till, R.J.: A Simple Generalization of the Area under the ROC Curve for Multiple Class Classification Problems. Machine Learning 45, 171–186 (2001)

    Article  MATH  Google Scholar 

  13. Magdalena, L., et al.: Ten Years of Genetic Fuzzy Systems: Current Framework and New Trends. Fuzzy Sets & Systems 141(1), 5–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Herrera, F., Lozano, M., Verdegay, J.L.: Generating Fuzzy Rules from Examples Using Genetic Algorithms. In: Fuzzy Logic and Soft Computing (1995c)

    Google Scholar 

  15. Karr, C.: Applying Genetic to Fuzzy Logic. AI Expert 6, 26–33 (1991)

    MathSciNet  Google Scholar 

  16. Homaifar, A., McCormick, E.: Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms. IEEE Transactions on Fuzzy Systems 3(2), 129–139 (1995)

    Article  Google Scholar 

  17. Park, D., Kandel, A.: Genetic-based New Fuzzy Reasoning Models with Application to Fuzzy Control. IEEE Transactions on Systems, Man, and Cybernetics 24(1), 39–47 (1994)

    Article  Google Scholar 

  18. Cordon, O., Herrera, F.: A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from Examples. International Journal of Approximate Reasoning 17(4), 369–407 (1997)

    Article  MATH  Google Scholar 

  19. Smith, S.: A Learning System Based on Genetic Adaptive Algorithms. Doctoral dissertation, Department of Computer Science, University of Pittsburgh (1980)

    Google Scholar 

  20. Holland, J., Reitman, J.: Cognitive Systems Based on Adaptive Algorithms. In: Pattern-Directed Inference Systems, Academic Press, London (1978)

    Google Scholar 

  21. Mamdani, E.H.: Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. IEEE Proceedings 121(12), 1585–1588 (1974)

    Google Scholar 

  22. Bäck, T., Hoffmeister, F., Schwefel, H.: A Survey of Evolution Strategies. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 2–9 (1991)

    Google Scholar 

  23. Li, J., Liu, H.: Kent Ridge Biomedical Data Set Repository (2003), http://sdmc.i2r.a-star.edu.sg/rp/

  24. Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, X., Zhao, Y., Zhang, YQ., Harrison, R. (2007). Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC for Gene Expression Data Analysis. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics