Abstract
Recently, the use of Receiver Operating Characteristic (ROC) Curve and the area under the ROC Curve (AUC) has been receiving much attention as a measure of the performance of machine learning algorithms. In this paper, we propose a SVM classifier fusion model using genetic fuzzy system. Genetic algorithms are applied to tune the optimal fuzzy membership functions. The performance of SVM classifiers are evaluated by their AUCs. Our experiments show that AUC-based genetic fuzzy SVM fusion model produces not only better AUC but also better accuracy than individual SVM classifiers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Kittler, J., et al.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)
Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)
Ho, T.K., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier Systems. IEEE Trans. Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)
Ho, T.K.: Random Decision Forests. In: Third Int’l Conf. Document Analysis and Recognition, Montreal, pp. 278–282 (1995)
Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Trans. Systems, Man, and Cybernetics 22(3), 418–435 (1992)
Qin, Z.-C.: ROC Analysis for Predictions Made by Probabilistic Classifiers. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3119–3124 (2005)
Ling, C.X., Huang, J., Zhang, H.: AUC: A Statistically Consistent and More Discriminating Measure than Accuracy. In: Proc. 18th Int’l Conf. Artificial Intelligence (IJCAI ’03), pp. 329–341 (2003)
Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Tech Report HPL-2003-4, HP Laboratories (2003)
Huang, J., Ling, C.X.: Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)
Zhang, H., Ling, C.X.: Toward Bayesian Classifiers with Accurate Probabilities. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, Springer, Heidelberg (2002)
Hand, D.J., Till, R.J.: A Simple Generalization of the Area under the ROC Curve for Multiple Class Classification Problems. Machine Learning 45, 171–186 (2001)
Magdalena, L., et al.: Ten Years of Genetic Fuzzy Systems: Current Framework and New Trends. Fuzzy Sets & Systems 141(1), 5–31 (2004)
Herrera, F., Lozano, M., Verdegay, J.L.: Generating Fuzzy Rules from Examples Using Genetic Algorithms. In: Fuzzy Logic and Soft Computing (1995c)
Karr, C.: Applying Genetic to Fuzzy Logic. AI Expert 6, 26–33 (1991)
Homaifar, A., McCormick, E.: Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms. IEEE Transactions on Fuzzy Systems 3(2), 129–139 (1995)
Park, D., Kandel, A.: Genetic-based New Fuzzy Reasoning Models with Application to Fuzzy Control. IEEE Transactions on Systems, Man, and Cybernetics 24(1), 39–47 (1994)
Cordon, O., Herrera, F.: A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from Examples. International Journal of Approximate Reasoning 17(4), 369–407 (1997)
Smith, S.: A Learning System Based on Genetic Adaptive Algorithms. Doctoral dissertation, Department of Computer Science, University of Pittsburgh (1980)
Holland, J., Reitman, J.: Cognitive Systems Based on Adaptive Algorithms. In: Pattern-Directed Inference Systems, Academic Press, London (1978)
Mamdani, E.H.: Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. IEEE Proceedings 121(12), 1585–1588 (1974)
Bäck, T., Hoffmeister, F., Schwefel, H.: A Survey of Evolution Strategies. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 2–9 (1991)
Li, J., Liu, H.: Kent Ridge Biomedical Data Set Repository (2003), http://sdmc.i2r.a-star.edu.sg/rp/
Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, X., Zhao, Y., Zhang, YQ., Harrison, R. (2007). Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC for Gene Expression Data Analysis. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-72031-7_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72030-0
Online ISBN: 978-3-540-72031-7
eBook Packages: Computer ScienceComputer Science (R0)