Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicting Time Series Using Incremental Langrangian Support Vector Regression

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4493))

Included in the following conference series:

  • 1564 Accesses

Abstract

A novel Support Vector Regression(SVR) algorithm has been proposed recently by us. This approach, called Lagrangian Support Vector Regression(LSVR), is an reformulation on the standard linear support vector regression, which leads to the minimization problem of an unconstrained differentiable convex function. During the process of computing, the inversion of matrix after incremented is solved based on the previous results, therefore it is not necessary to relearn the whole training set to reduce the computation process. In this paper, we implemented the LSVR and tested it on Mackey-Glass time series to compare the performances of different algorithms. According to the experiment results, we achieve a high-quality prediction about time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  2. Deng, N.Y., Tian, Y.J.: New Methods in Data Mining—Support Vector Machine. Science Press, Beijing (2004)

    Google Scholar 

  3. Mangasarian, O.L., Musicant, D.R.: Lagrangian Support Vector Machines. Journal of Machine Learning Research 1, 161–177 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shao, X.J., He, G.P.: Lagrange Support Vector Regression. Intelligent Information Management Systems and Technologies 1(3), 434–440 (2005)

    MathSciNet  Google Scholar 

  5. Casdagli, M.: Nonlinear Prediction of Chaotic Time-series. Physica D 35, 335–356 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mackey, M.C., Glass, L.: Oscillation and Chaos in Physiological Control Systems. Science 197, 287–294 (1977)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support Vector Networks. Machine learning 20, 273–297 (1995)

    MATH  Google Scholar 

  8. Peking University. Advanced algebra. China High Education Press, Beijing (1987)

    Google Scholar 

  9. Yuan, Y.X., Sun, W.Y.: Optimization Theories and Tethods. Science Press, Beijing (1997)

    Google Scholar 

  10. Mukherjee, S., Osuna, E., Girosi, F.: Nonlinear Prediction of Chaotic Time Series using Support VectorMachines. In: Proc. IEEE NNSP’97, Amelia Island, FL (1997)

    Google Scholar 

  11. Muller, K.R., Smola, A.J., Ratsch, G., Scholkopf, B., Kohlmorgen, J.: Using Support Vector Machines for Time Series Prediction. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods – Support Vector Learning, pp. 243–254. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Müller, K.R., Smola, J.A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.N.: Predicting Time Series with Support Vector Machines. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999–1004. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Smola, A.J., Schölkopf, B.: A Tutorial on Support Vector Regression. NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK (1998)

    Google Scholar 

  14. Quan, Y., Yang, J., Yao, L.X., Ye, C.Z.: Successive Over Relaxation for Support Vector Regression. Journal of Software 15(2), 200–206 (2004)

    MATH  Google Scholar 

  15. Demiriz, A., Bennett, K., Breneman, C., Embrechs, M.: Support Vector Machine Regression in Chemometrics. Computing Science and Statistics (2001)

    Google Scholar 

  16. Dibike, Y.B., Velickov, S., Solomatine, D.: Support Vector Machines: Review and Applications in Civil Engineering. In: Schleider, O., Zijderveld, A. (eds.) AI Methods in Civil Engineering Applications, Cottbus, pp. 45–58 (2000)

    Google Scholar 

  17. Collobert, R., Bengio, S.: SVMTorch: Support Vector Machines for Large-scale Regression Problems. Journal of Machine Learning Research 1(1), 143–160 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Derong Liu Shumin Fei Zengguang Hou Huaguang Zhang Changyin Sun

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Duan, H., Hou, W., He, G., Zeng, Q. (2007). Predicting Time Series Using Incremental Langrangian Support Vector Regression. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72395-0_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72395-0_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72394-3

  • Online ISBN: 978-3-540-72395-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics