Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 41))

Abstract

This paper presents a new way to solve the inverse problem of electrocardiography in terms of heart model parameters. The developed event estimation and recognition method uses a unified neural network (UNN)-based optimization system to determine the most relevant heart model parameters. A UNN-based preliminary ECG analyzer system has been created to reduce the searching space of the optimization algorithm. The optimal model parameters were determined by a relation between objective function minimization and robustness of the solution. The final evaluation results, validated by physicians, were about 96% correct. Starting from the fact that input ECGs contained various malfunction cases, such as Wolff-Parkinson-White (WPW) syndrome, atrial and ventricular fibrillation, these results suggest this approach provides a robust inverse solution, circumventing most of the difficulties of the ECG inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thaker, N.V., Ferrero, J.M.: Electrophysiologic models of heart cells and cell networks. IEEE Eng. Med. Biol. Soc. Magazine 17(5), 73–83 (1998)

    Article  Google Scholar 

  2. MacLeod, R.S., Brooks, D.H.: Recent progress in inverse problems in electrocardiology. IEEE Eng. Med. Biol. Soc. Magazine 17(1), 73–83 (1998)

    Article  Google Scholar 

  3. Szilágyi, S.M.: Event Recognition, Separation and Classification from ECG Recordings. In: Proc 20th Ann. Int. Conf. IEEE EMBS, pp. 236–239. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  4. Cuppen, J.J.M., van Oosterom, A.: Model studies with inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng. 31, 652–659 (1984)

    Article  Google Scholar 

  5. Guanglin, L., Bin, H.: Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. IEEE Trans. Biomed. Eng. 48, 660–669 (2001)

    Article  Google Scholar 

  6. Shahidi, A.V., Savard, P., Nadeau, R.: Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans. IEEE Trans. Biomed. Eng. 41, 249–256 (1994)

    Article  Google Scholar 

  7. Mirvis, D.M.: Validation of body surface electrocardiographic mapping. In: Mirvis, D.M. (ed.) Body surface electrocardiographic mapping, pp. 63–74. Kluwer, Dordrecht (1988)

    Google Scholar 

  8. Minami, K., Nakajima, H., Yoyoshima, T.: Real time discrimination of the ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans. Biomed. Eng. 46, 179–185 (1999)

    Article  Google Scholar 

  9. Lagerholm, M., et al.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–847 (2000)

    Article  Google Scholar 

  10. Osowski, S., Hoai, L.T.: ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48, 1265–1271 (2001)

    Article  Google Scholar 

  11. Osowski, S., Hoai, L.T., Markiewicz, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51, 582–589 (2004)

    Article  Google Scholar 

  12. Vapnik, V.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  13. Smola, A., Scholkopf, B.: A tutorial on support vector regression. Royal Holloway College, Univ. London, NeuroColt Tech. Rep., NV2-TR-1998-030 (1998)

    Google Scholar 

  14. Szilágyi, S.M., Benyó, Z., Dávid, L.: Heart model based ECG signal processing. In: Proc. 5th IFAC Symp. Modell Contr. Biomed. Syst., pp. 213–217 (2003)

    Google Scholar 

  15. Szilágyi, S.M., Benyó, Z., Dávid, L.: WPW syndrome identification and classification using ECG analysis. In: Proc. World Congr. Med. Phys. Biomed. Eng. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Eduardo Gomez Ramírez Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szilágyi, S.M., Szilágyi, L., Benyó, Z. (2007). Spatial Heart Simulation and Analysis Using Unified Neural Network. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72432-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72431-5

  • Online ISBN: 978-3-540-72432-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics